
CS 270 Combinatorial Algorithms & Data
Structures — Spring 2023

Problem Set 4
Due: 11:59pm, Wednesday, March 8th
Solution maximum page limit: 3 pages

See homework policy at https://cs270.org/spring23/syllabus/#homework-policies

Problem 1: (20 points) In simple tabulation hashing, we write a key x ∈ [u] in base
u1/c (assume u1/c is an integer and power of 2) so that x =

∑c−1
i=0 xi · ui/c. We call the xi

“characters”. We then allocate c completely random lookup tables H0, . . . , Hc−1 each of size
[u1/c]. Then for each y ∈ [u1/c] we set Hi(y) uniformly at random from [m] (assume also m
is a power of 2). Then to hash x, we define (where ⊕ denotes bitwise XOR)

h(x) = H0(x0)⊕H1(x1)⊕ · · · ⊕Hc−1(xc−1).

(a) (5 points) Fix c,m ≥ 1. Show that the family H of all such hash functions is 3-wise
independent.

(b) (5 points) Show that H is not 4-wise independent.

(c) (10 points) Imagine using such an H to implement hashing with chaining. Show that
if m > n1.01 then with probability at least 2/3, every linked list in the hash table has
size O(1). Hint: show that if a subset T of the n items is “large”, then H behaves
completely randomly on some “somewhat large” subset T ′ of T .

Problem 2: (20 points) In the static dictionary problem, (x1, v1), . . . , (xn, vn) are n (key,
value) pairs given up front, and we would like to create a data structure with low memory
and fast preprocessing that supports querying keys in O(1) worst-case time, guaranteed (not
just in expectation!). A hash function h : [U ] → [m] is perfect if h(xi) 6= h(xj) for any
1 ≤ i < j ≤ n. Note that if we had a perfect hash function, we could simply have an array
in which we store (xi, vi) directly in the h(xi)’th position of the array, and queries would be
constant time (assuming h supports evaluation in constant time).

(a) (5 points) Suppose we pick a hash function h : [U ] → [m] at random from a 2-wise
independent hash family for m = n2, such that h(x) can be computed in O(1) for any
x. Show that h is a perfect hash function with probability Ω(1).

(b) (2 points) Deduce from (a) that there is a solution to static dictionary using O(n2)
space, with O(1) worst case query time, and O(n2) expected preprocessing time.

(c) (8 points) Give a solution to static dictionary with O(n) space, O(1) worst case query
time, and O(n) expected preprocessing time. Hint: do 2-level hashing. First pick
h : [U ]→ [n] from a 2-wise independent family. Then for each i = 1, . . . , n pick a new
2-wise hash function gi to again hash the keys x with h(x) = i.



Problem 3: (20 points) In the static approximate dictionary problem, we are given n (key,
value) pairs {(xi, vi)}ni=1 (with distinct keys xi) and would like to create a data structure
supporting query(x). The answer to this query should be vi if x = xi for some i; otherwise,
if x does not equal xi for any i, the data structure can silently fail; that is, any (garbage)
output is allowed. The xi are in {0, 1 . . . , U − 1}, and the vi are in {0, 1}r. Show that a
randomized solution exists using O(nr) bits of space and O(n) expected preprocessing time,
and O(1) worst case query time (assuming r is at most the word size w). For the sake of
this problem, you can assume access to as many perfectly random hash functions as you’d
like without paying for the memory to store them, and which are (1) fully random, and (2)
can be evaluated in constant time. Hint: use cuckoo hashing, where you break up the value
associated with key x into “pieces”, and store these pieces separately in A[h(x)] and A[g(x)]
for your hash table A.

Problem 4: (1 point) How much time did you spend on this problem set? If you can
remember the breakdown, please report this per problem. (sum of time spent solving problem
and typing up your solution)

2


