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See homework policy at https://cs270.org/spring23/syllabus/#homework-policies

Problem 1: In weighted vertex cover we have an undirected graph with n vertices and m
edges. Each vertex v has a cost cv > 0. We must choose a subset S of the vertices such that

• Each one of the m edges is incident to at least one vertex in S.

•
∑

v∈S cv is minimized amongst all subsets S of vertices satisfying the previous bullet.

(a) (3 points) Modify the primal LP formulation from Lecture 18 to handle costs, and
write the new dual. (This should be a minor modification of what was done in class.)

(b) (7 points) Give a greedy algorithm for weighted vertex cover achieving a 2-approximation.
Hint: Maintain a feasible dual solution and build up a feasible primal solution (i.e.
as long as an edge is not satisfied, cover it using one or both of its endpoints). The
primal solution you maintain should be fractional, and only take a vertex into S once
its variable becomes big enough.

Problem 2: In this and the next problem, we will work toward a PTAS for a scheduling
problem. There are n jobs that we would like to schedule on m machines. Job i requires
processing time pi, and each job must be assigned to exactly one machine. The completion
time of a machine is then the sum of processing times of jobs assigned to it, and the “load”
of an assignment is the maximum completion time of any machine in that assignment. We
want to minimize load.

(a) (2 points) Let pmax be the maximum processing time of any job. Show that the quantity
max{pmax, (1/m)

∑n
i=1 pi} is a lower bound on OPT.

(b) (3 points) Consider a greedy algorithm which loops over the jobs from 1 to n, and for
job i assigns it to the currently least loaded machine (the one whose completion time
when considering jobs assigned so far is smallest). Show that the greedy algorithm
achieves completion time at most (2− 1/m)OPT. Hint: Use (a).



Problem 3: Now suppose we want a PTAS for the scheduling problem from Problem 2, i.e.
to achieve load at most (1 + ε)OPT with an algorithm whose running is time polynomial in
the input size (the exponent of this polynomial can be any function of 1/ε). Define the “big”
jobs to be B = {i ∈ [n] : pi ≥ εOPT} and the “small” jobs to be S = {i ∈ [n] : pi < εOPT}.

(a) (2 points) Show that if the jobs in B are assigned to machines to achieve load L, then
greedily assigning the remaining jobs in S achieves load at most max{L, (1 + ε)OPT}.

(b) (4 points) Show that if there are at most k distinct job processing times across all
jobs, then for any T there is a dynamic programming algorithm which finds a schedule
achieving load at most T in time O(n2k) (or reports if no such schedule exists).

(c) (5 points) Conclude that, if we know OPT, we can schedule all jobs with load at most
(1 + ε)OPT in time nO(log(1/ε)/ε). Hint: For i ∈ B, round pi to ε(1 + ε)j for integer j.

(d) (4 points) In actuality we don’t know OPT. Show, nonetheless, that there is a PTAS
for our scheduling problem.

Problem 4: (1 point) How much time did you spend on this problem set? If you can
remember the breakdown, please report this per problem. (sum of time spent solving problem
and typing up your solution)
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