CS 270: Combinatorial Algorithms and Data Structures

Spring 2023

Lecture 1 -January 17, 2023

Prof. Jelani Nelson

Scribe: Altan Haan

1 Single-Source Shortest Path

In this lecture, we will cover the single-source shortest path problem, with a focus on the recent work by Bernstein, Nanongkai, and Wulff-Nilsen [BNW22]. We begin by covering some mathematical background, before jumping into a sketch of the algorithm.

1.1 General Background

Definition 1.1. A weighted directed graph is a tuple G = (V, E, w) where V is a set of vertices, E is a set of directed edges of the form (u, v) where $u, v \in V$, and $w : E \to \mathbb{R}$ gives the edge weights. The *length* of a path $P = (v_0, \ldots, v_r)$ is naturally defined as $w(P) = \sum_{i=1}^r w(v_{i-1}, v_i)$. Lastly, we will frequently use m = |E| and n = |V| to denote the number of edges and vertices respectively.

Definition 1.2. The single-source shortest path (SSSP) task takes as input a directed weighted graph G = (V, E, w) and a source vertex $s \in V$, and outputs a directed tree rooted at s such that for all $v \in V$ the shortest path from $s \to v$ is given by the (unique) path in the tree from $s \to v$.

For the result in [BNW22], we further constrain w such that for all $e \in E$, $w(e) \in \mathbb{Z}$ and $-W \leq w(e) \leq W$ for some $W \geq 0$.

Remark 1.3. We have seen two algorithms from undergrad algorithms for solving this problem:

- Dijkstra's algorithm, which runs in $O(m+n \log n)$ time under the assumption that $w(e) \ge 0$ for all $e \in E$; and
- Bellman-Ford, which runs in O(mn) time for unrestricted edge weights (whilst detecting negative weight cycles if any exist).

Definition 1.4. For convenience, we write $\tilde{O}(f)$ in place of $O(f \cdot (\log f)^k)$ for some sufficient k.

1.2 Price Functions and Scaling

Definition 1.5. A price function is a function $\varphi : V \to \mathbb{R}$, which defines an associated transformed weight function $w_{\varphi}(u, v) = w(u, v) + \varphi(u) - \varphi(v)$.

Remark 1.6. For any path $P = (v_0, \ldots, v_r)$ we have $w_{\varphi}(P) = w(P) + \varphi(v_0) - \varphi(v_r)$, by a simple telescoping argument (the prices of internal vertices cancel out). It follows that $w_{\varphi}(P) = w(P)$ if P is a cycle, as $v_0 = v_r$.

Remark 1.7. As all paths P from $s \to v$ have $w_{\varphi}(P) = w(P) + \varphi(s) - \varphi(v)$, the shortest path $P^* = \arg\min_P(w(P) + \varphi(s) - \varphi(v)) = \arg\min_P w(P)$ remains unchanged.

With these observations, we can formulate a new strategy for solving SSSP: if we can find a φ such that $w_{\varphi}(e) \geq 0$ for all $e \in E$, then we can utilize the much cheaper Dijkstra's algorithm on the transformed weights. We'll call these "good" price functions. But first, we need to show that such φ 's do in fact exist.

Claim 1.8. There exists a $\varphi: V \to \mathbb{R}$ such that $w_{\varphi}(e) \ge 0$ for all $e \in E$, if and only if G has no negative cycles.

Proof. The forward direction is simple: supposing we have such a φ , then by Remark 1.6 we know any cycle C satisfies $w(C) = w_{\varphi}(C) \ge 0$.

For the other direction, assume there are no negative cycles and define $\varphi(v) = d_G(s, v)$ where $d_G(s, v)$ is the length of the shortest path from $s \to v$ in G. Then for any $(u, v) \in E$, we have $w_{\varphi}(u, v) = w(u, v) + d_G(s, u) - d_G(s, v)$. By the triangle inequality, we also know that $d_G(s, v) \leq d_G(s, u) + w(u, v)$. Together it follows that

$$w_{\varphi}(u,v) \ge w(u,v) + d_G(s,u) - (d_G(s,u) + w(u,v)) = 0.$$

Now that we know φ exists under the standard SSSP assumption, we state and prove a theorem which allows us to take some shortcuts on the way to utilzing Dijkstra's algorithm.

Theorem 1.9 (Goldberg [Gol95]). Suppose we have an algorithm solve which takes G and returns a good φ in T(m) time, under the assumption that $w(e) \ge -1$ for all $e \in E$. Then there is an algorithm solve^{*} that runs in $O(T(m) \log W)$ time in the general case of $w(e) \ge -W$. Note that w(e) is assumed to be integral.

Proof. Without loss of generality, we round up $W = 2^k$ to the nearest power of 2. We proceed by strong induction on k.

Base case. This follows trivially from just calling solve.

Inductive case. Define $\hat{w}(e) = \lceil w(e)/2 \rceil$ and $\hat{G} = (V, E, \hat{w})$. Then, let $\hat{\varphi} = \texttt{solve}^*(\hat{G})$, and define $\varphi' = 2\hat{\varphi}$. Note that $\hat{\varphi}$ is well-defined as $\lceil w(e)/2 \rceil \ge -2^{k-1}$. Furthermore,

$$w(e) \ge 2[w(e)/2] - 1 = 2\hat{w}(e) - 1.$$

It follows that for any $(u, v) \in E$,

$$\begin{split} w_{\varphi'}(u,v) &= w(u,v) + \varphi'(u) - \varphi'(v) \ge 2\hat{w}(u,v) - 1 + 2\hat{\varphi}(u) - 2\hat{\varphi}(v) \\ &= 2(\hat{w}(u,v) + \hat{\varphi}(u) - \hat{\varphi}(v)) - 1 \\ &= 2\hat{w}_{\hat{\varphi}}(u,v) - 1 \\ &\ge -1, \end{split}$$

where the last inequality is due to the goodness of $\hat{\varphi}$ with respect to \hat{w} .

This shows that $G_{\varphi'}$ (i.e. G with the transformed weight under φ') satisfies the conditions for solve, and so the final price function is given by $\varphi = \operatorname{solve}(G_{\varphi'}) + \varphi'$ as $G_{\varphi} = (G_{\varphi'})_{\operatorname{solve}(G_{\varphi'})}$. \Box

1.3 Bernstein–Nanongkai–Wulff-Nilsen (BNWN)

We now sketch out the high-level approach taken by BNWN. First we'll give the formal statement.

Theorem 1.10 (Bernstein–Nanongkai–Wulff-Nilsen). Let G = (V, E, w) such that $-W \le w(e) \le W$ for some $W \ge 0$ and $w(e) \in \mathbb{Z}$ for all $e \in E$, and let $s \in V$ be the source. Then there is an algorithm which computes SSSP in $\tilde{O}(m \log W)$ time.

We also give some definitions used in the proof sketch.

Definition 1.11 (Weak diameter). Let G = (V, E, w) and $S \subseteq V$ be a strongly connected component. Then the *weak diameter* of S is defined as $\max_{u,v \in S} d_G(u, v)$.

Definition 1.12. For a given source s and target vertex v, we denote the minimum number of negative edges on any shortest path from $s \to v$ by $\eta_G(v)$.

Proof sketch (Theorem 1.10). First, we augment G with a dummy source node σ by defining $G_{\sigma} = (V_{\sigma}, E_{\sigma}, w_{\sigma})$, where

$$V_{\sigma} = V \cup \{\sigma\},$$

$$E_{\sigma} = E \cup \{(\sigma, v) \mid v \in V\},$$

$$w_{\sigma}(u, v) = \begin{cases} 0 & \text{if } u = \sigma, \\ w(u, v) & \text{otherwise.} \end{cases}$$

Note that solving SSSP on G_{σ} with σ gives the solution for G with s, so for the rest of the sketch we'll just refer to G_{σ} as G^{1} .

We now cover the subroutines utilized by the full algorithm.

LowDiameterDecomp(G, D). This subroutine takes a graph G with nonnegative edge weights and $D \ge 0$ computes a set $E^{\text{rem}} \subseteq E$ such that:

- (1) Each strongly connected component (SCC) of $G \setminus E^{\text{rem}}$ has weak diameter less than or equal to D. That is, for all u, v in the SCC, $d_G(u, v) \leq D$ (where the distance is taken in the original graph containing E^{rem}).
- (2) The probability of an edge being in E^{rem} satisfies

$$P(e \in E^{\text{rem}}) \le O\left(\frac{w(e)\log^2 n}{D} + n^{-10}\right).$$

This subroutine runs in O(m) time.

FixDAGEdges(G, P). This subroutine takes in a graph G and vertex partitioning P such that (1) each partitioned subgraph has no negative weight edges and (2) the graph obtained by contracting each partition to a single vertex is a DAG. Under these assumptions, FixDAGEdges outputs a good price function in O(m + n) time.

¹Assuming $n \ll m$, the time complexity remains unchanged.

ElimNeg(G). This subroutine takes a graph G with constant out-degree and outputs a good price function in $O(\log n \sum_{v \in V} (1 + \eta_G(v)))$ time. We briefly remark that any graph can be transformed into one with constant out-degree by replacing non-constant vertices with zero-weight cycles as depicted below:

ScaleDown (G, Δ, B) . The subroutine takes a graph G such that $\eta(G) = \max_{v \in V} \eta_G(v) \leq \Delta$ and $w(e) \geq -2B$ for all $e \in E$, and returns a price function φ such that $\varphi(e) \geq -B$ for all $e \in E$.

Main algorithm. At a high level, ScaleDown invokes LowDiameterDecomp, FixDAGEdges, and ElimNeg. ScaleDown is in turn invoked repeatedly by the main algorithm. Intuitively, LowDiameterDecomp produces partitions with small η values.

References

- [BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-source shortest paths in near-linear time. In *Proceedings of the 63rd Annual IEEE* Symposium on Foundations of Computer Science (FOCS), pages 600–611, 2022.
- [Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. *SIAM Journal* on Computing, 24(3):494–504, 1995.