
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 1 — January 17, 2023

Prof. Jelani Nelson Scribe: Altan Haan

1 Single-Source Shortest Path

In this lecture, we will cover the single-source shortest path problem, with a focus on the recent work
by Bernstein, Nanongkai, and Wulff-Nilsen [BNW22]. We begin by covering some mathematical
background, before jumping into a sketch of the algorithm.

1.1 General Background

Definition 1.1. A weighted directed graph is a tuple G = (V,E,w) where V is a set of vertices, E
is a set of directed edges of the form (u, v) where u, v ∈ V , and w : E → R gives the edge weights.
The length of a path P = (v0, . . . , vr) is naturally defined as w(P) =

∑r
i=1w(vi−1, vi). Lastly, we

will frequently use m = |E| and n = |V | to denote the number of edges and vertices respectively.

Definition 1.2. The single-source shortest path (SSSP) task takes as input a directed weighted
graph G = (V,E,w) and a source vertex s ∈ V , and outputs a directed tree rooted at s such that
for all v ∈ V the shortest path from s→ v is given by the (unique) path in the tree from s→ v.

For the result in [BNW22], we further constrain w such that for all e ∈ E, w(e) ∈ Z and
−W ≤ w(e) ≤W for some W ≥ 0.

Remark 1.3. We have seen two algorithms from undergrad algorithms for solving this problem:

• Dijkstra’s algorithm, which runs in O(m+n log n) time under the assumption that w(e) ≥ 0
for all e ∈ E; and

• Bellman-Ford, which runs in O(mn) time for unrestricted edge weights (whilst detecting
negative weight cycles if any exist).

Definition 1.4. For convenience, we write Õ(f) in place of O(f · (log f)k) for some sufficient k.

1.2 Price Functions and Scaling

Definition 1.5. A price function is a function ϕ : V → R, which defines an associated transformed
weight function wϕ(u, v) = w(u, v) + ϕ(u)− ϕ(v).

Remark 1.6. For any path P = (v0, . . . , vr) we have wϕ(P) = w(P) + ϕ(v0)− ϕ(vr), by a simple
telescoping argument (the prices of internal vertices cancel out). It follows that wϕ(P) = w(P) if
P is a cycle, as v0 = vr.

Remark 1.7. As all paths P from s → v have wϕ(P) = w(P) + ϕ(s) − ϕ(v), the shortest path
P ∗ = arg minP (w(P) + ϕ(s)− ϕ(v)) = arg minP w(P) remains unchanged.

1

With these observations, we can formulate a new strategy for solving SSSP: if we can find a ϕ
such that wϕ(e) ≥ 0 for all e ∈ E, then we can utilize the much cheaper Dijkstra’s algorithm on
the transformed weights. We’ll call these “good” price functions. But first, we need to show that
such ϕ’s do in fact exist.

Claim 1.8. There exists a ϕ : V → R such that wϕ(e) ≥ 0 for all e ∈ E, if and only if G has no
negative cycles.

Proof. The forward direction is simple: supposing we have such a ϕ, then by Remark 1.6 we know
any cycle C satisfies w(C) = wϕ(C) ≥ 0.

For the other direction, assume there are no negative cycles and define ϕ(v) = dG(s, v) where
dG(s, v) is the length of the shortest path from s → v in G. Then for any (u, v) ∈ E, we have
wϕ(u, v) = w(u, v) + dG(s, u) − dG(s, v). By the triangle inequality, we also know that dG(s, v) ≤
dG(s, u) + w(u, v). Together it follows that

wϕ(u, v) ≥ w(u, v) + dG(s, u)− (dG(s, u) + w(u, v)) = 0.

Now that we know ϕ exists under the standard SSSP assumption, we state and prove a theorem
which allows us to take some shortcuts on the way to utilzing Dijkstra’s algorithm.

Theorem 1.9 (Goldberg [Gol95]). Suppose we have an algorithm solve which takes G and returns
a good ϕ in T (m) time, under the assumption that w(e) ≥ −1 for all e ∈ E. Then there is an
algorithm solve∗ that runs in O(T (m) logW) time in the general case of w(e) ≥ −W . Note that
w(e) is assumed to be integral.

Proof. Without loss of generality, we round up W = 2k to the nearest power of 2. We proceed by
strong induction on k.

Base case. This follows trivially from just calling solve.

Inductive case. Define ŵ(e) = dw(e)/2e and Ĝ = (V,E, ŵ). Then, let ϕ̂ = solve∗(Ĝ), and
define ϕ′ = 2ϕ̂. Note that ϕ̂ is well-defined as dw(e)/2e ≥ −2k−1. Furthermore,

w(e) ≥ 2dw(e)/2e − 1 = 2ŵ(e)− 1.

It follows that for any (u, v) ∈ E,

wϕ′(u, v) = w(u, v) + ϕ′(u)− ϕ′(v) ≥ 2ŵ(u, v)− 1 + 2ϕ̂(u)− 2ϕ̂(v)

= 2(ŵ(u, v) + ϕ̂(u)− ϕ̂(v))− 1

= 2ŵϕ̂(u, v)− 1

≥ −1,

where the last inequality is due to the goodness of ϕ̂ with respect to ŵ.
This shows that Gϕ′ (i.e. G with the transformed weight under ϕ′) satisfies the conditions for

solve, and so the final price function is given by ϕ = solve(Gϕ′) +ϕ′ as Gϕ = (Gϕ′)solve(Gϕ′)
.

2

1.3 Bernstein–Nanongkai–Wulff-Nilsen (BNWN)

We now sketch out the high-level approach taken by BNWN. First we’ll give the formal statement.

Theorem 1.10 (Bernstein–Nanongkai–Wulff-Nilsen). Let G = (V,E,w) such that −W ≤ w(e) ≤
W for some W ≥ 0 and w(e) ∈ Z for all e ∈ E, and let s ∈ V be the source. Then there is an
algorithm which computes SSSP in Õ(m logW) time.

We also give some definitions used in the proof sketch.

Definition 1.11 (Weak diameter). Let G = (V,E,w) and S ⊆ V be a strongly connected compo-
nent. Then the weak diameter of S is defined as maxu,v∈S dG(u, v).

Definition 1.12. For a given source s and target vertex v, we denote the minimum number of
negative edges on any shortest path from s→ v by ηG(v).

Proof sketch (Theorem 1.10). First, we augment G with a dummy source node σ by defining Gσ =
(Vσ, Eσ, wσ), where

Vσ = V ∪ {σ},
Eσ = E ∪ {(σ, v) | v ∈ V },

wσ(u, v) =

{
0 if u = σ,

w(u, v) otherwise.

Note that solving SSSP on Gσ with σ gives the solution for G with s, so for the rest of the sketch
we’ll just refer to Gσ as G.1

We now cover the subroutines utilized by the full algorithm.

LowDiameterDecomp(G,D). This subroutine takes a graph G with nonnegative edge weights and
D ≥ 0 computes a set Erem ⊆ E such that:

(1) Each strongly connected component (SCC) of G \Erem has weak diameter less than or equal
to D. That is, for all u, v in the SCC, dG(u, v) ≤ D (where the distance is taken in the
original graph containing Erem).

(2) The probability of an edge being in Erem satisfies

P (e ∈ Erem) ≤ O
(
w(e) log2 n

D
+ n−10

)
.

This subroutine runs in Õ(m) time.

FixDAGEdges(G,P). This subroutine takes in a graph G and vertex partitioning P such that (1)
each partitioned subgraph has no negative weight edges and (2) the graph obtained by contracting
each partition to a single vertex is a DAG. Under these assumptions, FixDAGEdges outputs a good
price function in O(m+ n) time.

1Assuming n � m, the time complexity remains unchanged.

3

ElimNeg(G). This subroutine takes a graph G with constant out-degree and outputs a good price
function in O(log n

∑
v∈V (1 + ηG(v))) time. We briefly remark that any graph can be transformed

into one with constant out-degree by replacing non-constant vertices with zero-weight cycles as
depicted below:

ScaleDown(G,∆, B). The subroutine takes a graph G such that η(G) = maxv∈V ηG(v) ≤ ∆ and
w(e) ≥ −2B for all e ∈ E, and returns a price function ϕ such that ϕ(e) ≥ −B for all e ∈ E.

Main algorithm. At a high level, ScaleDown invokes LowDiameterDecomp, FixDAGEdges, and
ElimNeg. ScaleDown is in turn invoked repeatedly by the main algorithm. Intuitively, LowDiame-
terDecomp produces partitions with small η values.

def main(G = (V,E,w)):
B ← 2n // without loss of generality , round n up to pow of 2

w ← B · w
G← (V,E,w)
ϕ0 ← 0
for i from 1 to log2B:

ψi ← ScaleDown(Gϕi−1 , n,B/2
i)

ϕi ← ϕi−1 + ψi
for each e ∈ E:

w∗(e)← wϕlog2 B
(e) + 1

run Dijkstra on (V,E,w∗)

References

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight
single-source shortest paths in near-linear time. In Proceedings of the 63rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 600–611, 2022.

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal
on Computing, 24(3):494–504, 1995.

4

