Lecture 1 - January 17, 2023
Prof. Jelani Nelson
Scribe: Altan Haan

1 Single-Source Shortest Path

In this lecture, we will cover the single-source shortest path problem, with a focus on the recent work by Bernstein, Nanongkai, and Wulff-Nilsen [BNW22]. We begin by covering some mathematical background, before jumping into a sketch of the algorithm.

1.1 General Background

Definition 1.1. A weighted directed graph is a tuple $G=(V, E, w)$ where V is a set of vertices, E is a set of directed edges of the form (u, v) where $u, v \in V$, and $w: E \rightarrow \mathbb{R}$ gives the edge weights. The length of a path $P=\left(v_{0}, \ldots, v_{r}\right)$ is naturally defined as $w(P)=\sum_{i=1}^{r} w\left(v_{i-1}, v_{i}\right)$. Lastly, we will frequently use $m=|E|$ and $n=|V|$ to denote the number of edges and vertices respectively.

Definition 1.2. The single-source shortest path (SSSP) task takes as input a directed weighted graph $G=(V, E, w)$ and a source vertex $s \in V$, and outputs a directed tree rooted at s such that for all $v \in V$ the shortest path from $s \rightarrow v$ is given by the (unique) path in the tree from $s \rightarrow v$.

For the result in [BNW22], we further constrain w such that for all $e \in E, w(e) \in \mathbb{Z}$ and $-W \leq w(e) \leq W$ for some $W \geq 0$.

Remark 1.3. We have seen two algorithms from undergrad algorithms for solving this problem:

- Dijkstra's algorithm, which runs in $O(m+n \log n)$ time under the assumption that $w(e) \geq 0$ for all $e \in E$; and
- Bellman-Ford, which runs in $O(m n)$ time for unrestricted edge weights (whilst detecting negative weight cycles if any exist).

Definition 1.4. For convenience, we write $\tilde{O}(f)$ in place of $O\left(f \cdot(\log f)^{k}\right)$ for some sufficient k.

1.2 Price Functions and Scaling

Definition 1.5. A price function is a function $\varphi: V \rightarrow \mathbb{R}$, which defines an associated transformed weight function $w_{\varphi}(u, v)=w(u, v)+\varphi(u)-\varphi(v)$.

Remark 1.6. For any path $P=\left(v_{0}, \ldots, v_{r}\right)$ we have $w_{\varphi}(P)=w(P)+\varphi\left(v_{0}\right)-\varphi\left(v_{r}\right)$, by a simple telescoping argument (the prices of internal vertices cancel out). It follows that $w_{\varphi}(P)=w(P)$ if P is a cycle, as $v_{0}=v_{r}$.

Remark 1.7. As all paths P from $s \rightarrow v$ have $w_{\varphi}(P)=w(P)+\varphi(s)-\varphi(v)$, the shortest path $P^{*}=\arg \min _{P}(w(P)+\varphi(s)-\varphi(v))=\arg \min _{P} w(P)$ remains unchanged.

With these observations, we can formulate a new strategy for solving SSSP: if we can find a φ such that $w_{\varphi}(e) \geq 0$ for all $e \in E$, then we can utilize the much cheaper Dijkstra's algorithm on the transformed weights. We'll call these "good" price functions. But first, we need to show that such φ 's do in fact exist.

Claim 1.8. There exists a $\varphi: V \rightarrow \mathbb{R}$ such that $w_{\varphi}(e) \geq 0$ for all $e \in E$, if and only if G has no negative cycles.

Proof. The forward direction is simple: supposing we have such a φ, then by Remark 1.6 we know any cycle C satisfies $w(C)=w_{\varphi}(C) \geq 0$.

For the other direction, assume there are no negative cycles and define $\varphi(v)=d_{G}(s, v)$ where $d_{G}(s, v)$ is the length of the shortest path from $s \rightarrow v$ in G. Then for any $(u, v) \in E$, we have $w_{\varphi}(u, v)=w(u, v)+d_{G}(s, u)-d_{G}(s, v)$. By the triangle inequality, we also know that $d_{G}(s, v) \leq$ $d_{G}(s, u)+w(u, v)$. Together it follows that

$$
w_{\varphi}(u, v) \geq w(u, v)+d_{G}(s, u)-\left(d_{G}(s, u)+w(u, v)\right)=0 .
$$

Now that we know φ exists under the standard SSSP assumption, we state and prove a theorem which allows us to take some shortcuts on the way to utilzing Dijkstra's algorithm.

Theorem 1.9 (Goldberg [Gol95]). Suppose we have an algorithm solve which takes G and returns a good φ in $T(m)$ time, under the assumption that $w(e) \geq-1$ for all $e \in E$. Then there is an algorithm solve* that runs in $O(T(m) \log W)$ time in the general case of $w(e) \geq-W$. Note that $w(e)$ is assumed to be integral.

Proof. Without loss of generality, we round up $W=2^{k}$ to the nearest power of 2 . We proceed by strong induction on k.

Base case. This follows trivially from just calling solve.
Inductive case. Define $\hat{w}(e)=\lceil w(e) / 2\rceil$ and $\hat{G}=(V, E, \hat{w})$. Then, let $\hat{\varphi}=\operatorname{solve}^{*}(\hat{G})$, and define $\varphi^{\prime}=2 \hat{\varphi}$. Note that $\hat{\varphi}$ is well-defined as $\lceil w(e) / 2\rceil \geq-2^{k-1}$. Furthermore,

$$
w(e) \geq 2\lceil w(e) / 2\rceil-1=2 \hat{w}(e)-1 .
$$

It follows that for any $(u, v) \in E$,

$$
\begin{aligned}
w_{\varphi^{\prime}}(u, v)=w(u, v)+\varphi^{\prime}(u)-\varphi^{\prime}(v) & \geq 2 \hat{w}(u, v)-1+2 \hat{\varphi}(u)-2 \hat{\varphi}(v) \\
& =2(\hat{w}(u, v)+\hat{\varphi}(u)-\hat{\varphi}(v))-1 \\
& =2 \hat{w}_{\hat{\varphi}}(u, v)-1 \\
& \geq-1,
\end{aligned}
$$

where the last inequality is due to the goodness of $\hat{\varphi}$ with respect to \hat{w}.
This shows that $G_{\varphi^{\prime}}$ (i.e. G with the transformed weight under φ^{\prime}) satisfies the conditions for solve, and so the final price function is given by $\varphi=\operatorname{solve}\left(G_{\varphi^{\prime}}\right)+\varphi^{\prime}$ as $G_{\varphi}=\left(G_{\varphi^{\prime}}\right)_{\operatorname{solve}\left(G_{\varphi^{\prime}}\right)}$.

1.3 Bernstein-Nanongkai-Wulff-Nilsen (BNWN)

We now sketch out the high-level approach taken by BNWN. First we'll give the formal statement.
Theorem 1.10 (Bernstein-Nanongkai-Wulff-Nilsen). Let $G=(V, E, w)$ such that $-W \leq w(e) \leq$ W for some $W \geq 0$ and $w(e) \in \mathbb{Z}$ for all $e \in E$, and let $s \in V$ be the source. Then there is an algorithm which computes $S S S P$ in $\tilde{O}(m \log W)$ time.

We also give some definitions used in the proof sketch.
Definition 1.11 (Weak diameter). Let $G=(V, E, w)$ and $S \subseteq V$ be a strongly connected component. Then the weak diameter of S is defined as $\max _{u, v \in S} d_{G}(u, v)$.

Definition 1.12. For a given source s and target vertex v, we denote the minimum number of negative edges on any shortest path from $s \rightarrow v$ by $\eta_{G}(v)$.

Proof sketch (Theorem 1.10). First, we augment G with a dummy source node σ by defining $G_{\sigma}=$ $\left(V_{\sigma}, E_{\sigma}, w_{\sigma}\right)$, where

$$
\begin{aligned}
V_{\sigma} & =V \cup\{\sigma\}, \\
E_{\sigma} & =E \cup\{(\sigma, v) \mid v \in V\}, \\
w_{\sigma}(u, v) & = \begin{cases}0 & \text { if } u=\sigma, \\
w(u, v) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note that solving SSSP on G_{σ} with σ gives the solution for G with s, so for the rest of the sketch we'll just refer to G_{σ} as G. ${ }^{1}$

We now cover the subroutines utilized by the full algorithm.
LowDiameterDecomp (G, D). This subroutine takes a graph G with nonnegative edge weights and $D \geq 0$ computes a set $E^{\text {rem }} \subseteq E$ such that:
(1) Each strongly connected component (SCC) of $G \backslash E^{\text {rem }}$ has weak diameter less than or equal to D. That is, for all u, v in the SCC, $d_{G}(u, v) \leq D$ (where the distance is taken in the original graph containing $\left.E^{\text {rem }}\right)$.
(2) The probability of an edge being in E^{rem} satisfies

$$
P\left(e \in E^{\mathrm{rem}}\right) \leq O\left(\frac{w(e) \log ^{2} n}{D}+n^{-10}\right) .
$$

This subroutine runs in $\tilde{O}(m)$ time.
FixDAGEdges (G, P). This subroutine takes in a graph G and vertex partitioning P such that (1) each partitioned subgraph has no negative weight edges and (2) the graph obtained by contracting each partition to a single vertex is a DAG. Under these assumptions, FixDAGEdges outputs a good price function in $O(m+n)$ time.

[^0]$\operatorname{ElimNeg}(G)$. This subroutine takes a graph G with constant out-degree and outputs a good price function in $O\left(\log n \sum_{v \in V}\left(1+\eta_{G}(v)\right)\right)$ time. We briefly remark that any graph can be transformed into one with constant out-degree by replacing non-constant vertices with zero-weight cycles as depicted below:

$\operatorname{ScaleDown}(G, \Delta, B)$. The subroutine takes a graph G such that $\eta(G)=\max _{v \in V} \eta_{G}(v) \leq \Delta$ and $w(e) \geq-2 B$ for all $e \in E$, and returns a price function φ such that $\varphi(e) \geq-B$ for all $e \in E$.

Main algorithm. At a high level, ScaleDown invokes LowDiameterDecomp, FixDAGEdges, and ElimNeg. ScaleDown is in turn invoked repeatedly by the main algorithm. Intuitively, LowDiameterDecomp produces partitions with small η values.

```
def main(G=(V,E,w)):
    B\leftarrow2n // without loss of generality, round n up to pow of 2
    w}\leftarrowB\cdot
    G}\leftarrow(V,E,\overline{w}
    \varphi}\leftarrow<
    for i from 1 to }\mp@subsup{\operatorname{log}}{2}{}B\mathrm{ :
        \psi
        \varphi}\leftarrow\leftarrow\mp@subsup{\varphi}{i-1}{+}+\mp@subsup{\psi}{i}{
    for each e\inE:
        w
    run Dijkstra on ( }V,E,\mp@subsup{w}{}{*}
```


References

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-source shortest paths in near-linear time. In Proceedings of the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 600-611, 2022.
[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on Computing, 24(3):494-504, 1995.

[^0]: ${ }^{1}$ Assuming $n \ll m$, the time complexity remains unchanged.

