
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 11 — February 21, 2023

Prof. Jelani Nelson Scribe: Amar Shah

1 Chernoff Bound

To prove the Chernoff inequality, we will use the Markov inequality which we state here without
proof:

Theorem 1.1 (Markov’s inequality). For an non-negative random variable Z. We have that ∀λ > 0

P[Z > λ] <
E[Z]

λ

Theorem 1.2 (Chernoff’s inequality). Take X1, ..., Xn ∈ {0, 1} independently, then P[Xi = 1] = pi,

X =
n∑

i=1
Xi, and µ = E[X]. Then, ∀ϵ > 0, we have that:

P[X > (1 + ϵ)µ] < [
eϵ

(1 + ϵ)1+ϵ
]µ

Proof. We first note that P[X > (1 + ϵ)µ] = P[etX > et(1+ϵ)µ]. This is true for any t > 0. Then
note that P[etX > et(1+ϵ)µ] < e−t(1+ϵ)µ E[etX] using Markov’s inequality. We will now try and find
an upperbound on the moment generating function E[etX]:

E[etX] = E[e
n∑

i=1
Xi

]

= E[
n∏

i=1

etXi]

=
n∏

i=1

E[etXi]

=
n∏

i=1

(1− pi + pie
t) by considering cases

=
n∏

i=1

(1 + pi(e
t − 1))

≤
n∏

i=1

epi(e
t−1)

= e

n∑
i=1

pi(e
t−1)

= eµ(e
t−1)

1

Thus, we get that:

P[etX > et(1+ϵ)µ] < e−t(1+ϵ)µ E[etX]

≤ e−t(1+ϵ)µeµ(e
t−1)

= eµ(e
t−1−t(1+ϵ))

By taking the first and second derivative, we get that eµ(e
t−1−t(1+ϵ)) is minimized when t =

ln(1 + ϵ). Plugging this in we get:

eµ(e
t−1−t(1+ϵ)) = eµ(1+−1−ln(1+ϵ)·[1+ϵ])

= eµ(ϵ−ln(1+ϵ)·[1+ϵ])

=
eµϵ

(1 + ϵ)(1+ϵ)µ

2 Load Balancing Review

Suppose that we have n = m servers and tasks. Recall how we upperbounded the probability that
one server would have more than λ tasks last time:

P[∃ server w/ load ≥ λ] = P[
m∧
i=1

server i has load ≥ λ]

≤
n∑

i=1

P[server i has load ≥ λ] by Union Bound

= n · P[server 1 has load ≥ λ]

= n · P[∃set T of λ jobs mapping to server 1]

≤ n ·
∑

T⊆[n];|T |=λ

P[all jobs ∈ T map to 1]

= n ·
(
n

λ

)
· (1
n
)λ using independence

Then we can show that when λ = O(log(n)
log(log(n))), we can show that this quantity is much smaller

than 1 using Stirling’s approximation. The important thing to note here is that we did not need to
use full independence for this proof. We just needed ”λ-wise indpendence” for the last step. This
realization motivates the following definitions in the next section.

2

3 k-wise Independence

3.1 k-wise Independent variables

Definition 3.1 (k-wise Independent Random Variables). Y1, Y2, ..., Yn are k − wise independent

if for all subsets of size k Yi1 , ..., Yik and for all values y1, ..., yk, we have that P[
k∨

j=1
Yij = yj] =

k∏
j=1

P[Yij = yj], i.e. any subset of size k are independent

Fact 3.2. k-wise independence of a set of variables Y1, ..., Yn for k > 1 implies (k − 1)-wise inde-
pendence. And thus it implies l-wise independence for all 1 ≤ l < k

Proof. Say we have that Y1, ..., Yn that is k-wise independent and we have some subset Yi1 , ..., Yik−1
.

We pick some Yt that is not in this subset(we know that this can be done since n ≥ k, otherwise
k-wise independence would not make any sense). Then we have that:

P[
k−1∧
j=1

Yij = yj] =
∑
z

P[Yt = z ∧
k−1∧
j=1

Yij = yj]

=
∑
z

[P[Yt = z]

k−1∏
j=1

P[Yij = yj]] by k-wise independence

= (

k−1∏
j=1

P[Yij = yj]) ·
∑
z

P[Yt = z]

= (
∑
z

P[Yt = z]) · 1

=
∑
z

P[Yt = z]

3.2 k-wise Independent Hash Functions

Definition 3.3 (k-wise Independent Hash Family). A hash family H is just a set of functions map-
ping [U] into [m]. A family is k-wise independent if h(0), h(1), ..., h(U − 1) are k-wise independent
for some h drawn uniformly at random from the family

The idea behind these hash functions is that we pick some h ∈ H u.a.r, but if we think about
h(0), ..., h(U − 1) as random variables based distributed over the possible values they take for each
function h ∈ H, then these are k-wise independent.

Fact 3.4. Specifying some h ∈ H takes log2(|H|) bits.

Our goal will be to make |H| as small as possible.

3

3.3 Some Examples

Attempt 1: Set H as the set of all functions mapping [U] into [m]. Clearly, this is k-wise
independent. To see this we take m = 2 for simplicity, i.e. we will match each x to either 0 or
1. Then the probability that some x ∈ [U] maps to 0 is 2U−1

2U
= 1

2 since there are 2U total hash

functions in H but if want that x maps to 0, there are 2U−1 possible hash functions that this could
be since there are U − 1 possible inputs that can map to 0 or 1.

Now once we have have that x maps to 1, what is then the probability that some y ∈ [U] maps

to 1. By a similar argument it must be 2U−2

2U−1 = 1
2 .

Thus, it is not hard to see in fact that this is in fact an independent hash family(not just k-wise),
since setting any number of inputs to something, will not effect the probability of what the other
inputs can map to.

However, since |H| = mU , we know that log|H = Ulog(m). We want to do better.

Attempt 2: We start in the case where U = m = p which is some prime. Set Hpoly(k) = {h(x) :

h(x) = (
k−1∑
i=0

aix
i)(mod p)}. Then we know that |Hpoly(k)| = pk = mk and thus log|Hpoly(k)| =

klog(m) which is much better.
To show that this is k-wise independent, take i1, ..., ik ∈ [U] and y1, ..., yk ∈ [m]. Then:

P
h∈H(k)

[

k−1∧
j=0

h(ij) = yj] =
#of h’s s.t. ∀ jh(ij) = yj

|Hpoly(k)|

=
1

pk

Clearly the denominator is pk, but to see why the number of h’s s.t. ∀j h(ij) = yj is 1, we can
note that this is essentially a k degree polynomial in our finite field and we want it to go through
k points. There is only one way to do this.

Finally, we may want get around the condition that m = U . We still assume that U = p which

is some prime. Then we define Ĥpoly(k) = {h(x) : h(x) = (
k−1∑
i=0

aix
i)(mod p)) (mod m)}. This works

almost as well since we get that |Ĥpoly(k)| = mk which gives us the same complexity as before.

4 Linear Probing Analysis

4.1 Dictionary Review

Recall the problem from last lecture, the dictionary problem on a universe of size u.
In hashing with chaining; we initialize m “bins” and h(x) tells you which bin the item should

go in. If there is a hashing collision, where two items hash to the same thing, then we instead
create a linked list with both the items. To query, you have to walk along the linked list to find
your queried item.

Claim 4.1. For all x ∈ [u], the expected time to query x is O(1 + n
m).

4

In static dictionary, there is a known data structure to take linear space and have constant time
query. However, there is no known algorithm for this regime in the dynamic problem, nor is there
a lower bound disallowing it.

4.2 Linear Probing

However, this approach is not great for cache reasons, so instead we use linear probing. We still
keep an array of size m, but when inserting x and finding a collision, we start at h(x) and continue
along in the array until we find an empty space. We do a similar walk for a query.

Definition 4.2. An interval I ⊆ [m] in our array is full if the number of keys in the database
hashing to I is ≥ |I|

Lemma 4.3. Suppose query(x) took k steps. Then h(x) is contained in ≥ k full intervals of all
different lengths.

Proof. Since we know that query(x) took k steps, it must be that x, x+1, ..., x+ k− 1 are all full.
Say that x− j is the first empty slot before x. Then we know that the interval x− j+1, ..., x must
be queried at least j ties since x− j is empty, but x− j + 1, ..., x is full.

Similarly for all l such that 0 ≤ l ≤ k − 1, we have that x − j + 1, ..., x + l must have been
queried l + j times. This proves the claim.

4.3 Analysis

Today, we will do the analysis assuing fully independent hashing. Next time we will to it for 7-wise
and 5-wise independent hashing. Recall that last time we talked about the famous theorem by
Donald Knuth:

Theorem 4.4 (Knuth [1]). In a hash table with linear probing with m = (1 + ϵ)n, then

E(query time) = O(1/ϵ2)

Today, we will show a slightly weaker version of it:

Theorem 4.5. In a hash table with linear probing with m = 2n, then

E(query time) = O(1)

Proof. Note that for some interval I, E[items that hash to I] = |I|
2 since m = 2n. Thus, by the

Chernoff bound we have that P[a length k interval is full] ≤ e−Ω(k)

The number of probes to query(x) is ≤
∞∑
k=1

1∃ length k full interval containing h(x). Thus, we have

that:

5

E[# probes to query(x)] ≤
∞∑
i=1

P[∃ length k full interval containing h(x)]

≤
∞∑
i=1

k P[a specific length k inteval containing h(x) is full] by Union Bound

≤
k∑

i=1

ke−Ω(k) by the Chernoff bound

= O(1)

Note that the sum
k∑

i=1
ke−Ω(k) actually converges faster than in needs to in order to get the

necessary bound. This gives intuition for how we are going to show this for 7-wise and 5-wise
independent hashing next time.

References

[1] Donald Knuth. Notes on “open” addressing, 1963. URL: http://jeffe.cs.illinois.edu/teaching/
datastructures/2011/notes/knuth-OALP.pdf.

6

