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1 Overview

In this lecture, we will look at the approximate membership query problem, and how Bloom
filters [Blo70] provide an efficient solution using only O(nw) bits of memory. We’ll also look at
Cuckoo hashing [PR01], a solution to the dynamic dictionary problem that gives O(1) worst-case
query time, an improvement over the expected O(1) query time from hashing with chaining or with
linear probing.

2 Bloom Filters

Recall the approximate membership problem; we want to maintain a set S ⊆ [U ] (where n := |S|),
subject to:

• insert(x): Updates S to include x, i.e. S ← S ∪ {x}

• query(x): Query the system to ask if x ∈ S; i.e. return true if x ∈ S, false if x /∈ S.

Here, we want the probability of a wrong answer to be at most ε.

We’ll look at one (Monte Carlo) randomized data structure to solve this problem; it’ll always be
efficient, but it may give the wrong answer with some probability. In particular, we’ll look at Bloom
filters (from the 1970s) [Blo70].

A natural question is: what’s the point of approximate membership? We’ve already seen dynamic
hashing and linear probing, which gives linear space and expected constant time operations, and we
can use these solutions to the dynamic dictionary problem to solve approximate membership.

The advantage of Bloom filters is that it uses only o(nw) bits of memory; we use less space than
just storing the keys themselves. In particular, it uses approximately 1.44n ln 1

ε bits (the 1.44 comes
from log2(e)).

The lower bound for the space complexity is Ω(n ln 1
ε ) bits of space (i.e. removing the 1.44 constant

multiple), which is actually achievable in the static case; it turns out it is impossible to achieve this
space for the dynamic case, shown by Lovett and Porat in 2013 [LP13].

With Bloom filters, we first initialize a bit array A of m bits to all 0’s. We then pick k independent
fully random hash functions mapping [U ]→ [m], and implement the operations as follows:

• insert(x): set A[hi(x)] = 1 for each i from 1 to k.

• query(x): query A[hi(x)] for each i from 1 to k, and take the AND of all of them.

Note that if x was truly in the set, then all of these locations would be set to 1; otherwise, at least
one of these location is probably 0, and we’d say no (there is the possibility that other elements
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have hashed to some of the same locations).

We could also analyze this algorithm to find the optimal values for m and k; the optimal value of m
turns out to be 1.44n ln 1

ε , and k to be Θ(ln 1
ε ).

We won’t show the analysis of traditional Bloom filters here, since we run into independence
problems, but we’ll analyze a slightly different version, which is easier to explain.

In the traditional Bloom filter, we have an array of length m = Θ(n log 1
ε ), and we set k locations in

the array to 1. (Note that we can possibly have two hash functions hashing to the same location.)

1 1 1 1

x

h1(x)
h2(x) h3(x)

h4(x)

m

Today, we’ll analyze a slightly different formulation; we have instead a 2D array with k rows and cn
columns. When we insert x, we set the location hi(x) in row i to 1, for each i = 1, . . . , k. Here, the
crucial difference is that each row is independent from one other.

k

cn

x

1

1

1

1h1(x)

h2(x)

h3(x)

h4(x)

Notice that (in both versions) we never have any false negatives; we only have false positives. That
is, we’ll always be certain that an item is not in the set, but we could incorrectly say that an item
is in the set.

Claim 2.1. If x /∈ S, then P(say x ∈ S) ≤ ε.

Proof. Suppose we fix a row i. We have a false positive if each A[i][hi(x)] is already occupied for
i = 1, . . . , k. This means the false positive probability is P(A[i][hi(x)] = 1)k. To compute this value,
suppose we look at the expected number of items in S that collide under x:

E[# items in S colliding with x under hi] =
∑
y∈S

P(hi(x) = hi(y))︸ ︷︷ ︸
1/cn

=
1

c
.

Notice that the probability that at least 1 item collides with x is at most 1
c by Markov’s inequality.

This is because the random variable for the number of items that collided with x takes a value c
times its expected value. (We can improve this analysis to get a better constant, but we omit it
here.)
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This probability we computed is the probability we get fooled in row i, so the probability we got
fooled in all k rows is 1

ck
, which we want to be at most ε. This gives k = Θ(log 1

ε ).

Notice that although we got a worse constant factor, we only needed 2-wise independence here, to
reduce P(hi(x) = hi(y)) =

1
cn .

If we wanted to get a better constant multiple for the space, we can reduce to the dictionary problem;
we can map to a range where there is a small probability of collisions, and then store the set of
h(x)’s using a dictionary that uses as little space as possible. Notice that the main reason why we
were able to get away with using less memory in bloom filters is because we just set k bits to 1,
instead of storing x. Here, we’re doing something similar, storing h(x) instead of storing x in the
dictionary.

3 Cuckoo Hashing

The goal of Cuckoo hashing [PR01] is to solve the dynamic dictionary problem. In hashing with
chaining and linear probing, the query and insertion time are both expected constant time, whereas
in cuckoo hashing, query time is worst case constant (we only look in two locations), and insertion
time is expected constant. It’s an open problem to get a solution to the dynamic dictionary problem
that is worst case constant in both query and insertion. (It’s theoretically possible to get linear
space and constant time query and insertion time, deterministically, but the best way we know of is
to use a balanced binary search tree.)

To implement Cuckoo hashing, we pick two fully independent hash functions h, g : [U ]→ [m], where
m is the size of the hash table. We then implement the operations as follows.

To query x, we check both A[h(x)] and A[g(x)]. The invariant we’ll maintain is that x will always
be in either A[h(x)] or A[g(x)]. If x is in neither location, then we say that x is not in the database.

For insertion, we put x in A[g(x)]. If A[g(x)] was null, then we’re done. However, if A[g(x)] is
already occupied, let x′ be the old key in A[g(x)] (let j = g(x) for ease of notation). If j = g(x′),
then we move x′ into h(x′); otherwise, move x′ to A[g(x′)] (since here j = h(x′)). We then recurse
in these two cases to insert x′ if there are any additional conflicts.

Intuitively, we insert x into A[g(x)], and move any existing element into their other hash location.
If this element also conflicts with another element, we continue moving these elements until there
are no conflicts. However, it is possible for this to go on forever (if there’s a cycle).

To resolve this, if this process goes on for longer than say 10 log n steps, we rebuild the entire hash
table from scratch. That is, we pick new hash functions h and g and re-insert the items. We then
repeat this process until it works, i.e. until we successfully insert every element back into the hash
table. The main idea is that the probability of this occurring is very tiny, so it’s unlikely this process
will happen or go on for to long.

(This insertion algorithm is why this algorithm is called “cuckoo hashing”; a cuckoo chick pushes
other eggs or young out of the nest when it hatches, much like how this algorithm pushes existing
elements out when inserting a new item.)
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It’s clear that query time is worst case constant, but we’ll show that the query time is expected
constant in a little bit.

As a little detour, cuckoo hashing can also be used to solve the static approximate dictionary
problem in O(nr) bits of memory.

The approximate dictionary problem is similar to approximate membership; the only difference here
is that we store a set of n key-value pairs, where all the values are r-bit strings. Notice that here
we’ll never actually store the keys. (This is in problem set 4; a hint is to use cuckoo hashing when
the cuckoo graph has no cycles, where P(no cycles) ≥ 1

2 .)

3.1 Cuckoo Hashing Analysis

Definition 3.1 (Cuckoo Graph). A Cuckoo graph is a multigraph (i.e. there could be multiple
edges between the same vertices) illustrating the process of Cuckoo hashing. Vertices are locations
in the hash table (so there are m vertices), and edges connect between h(x) and g(x) for each key
x ∈ S, where S is the set of keys in the database (so there are n edges).

Let’s look at the possible cases that can happen during an insertion.

• One case is that we have a path. (The squiggly line is the first hash of x, and other arrows
denote the movement of elements due to conflicts.)

x
x2 x3 x4

· · ·

Here, x hashes to where x2 is originally, so x2 moves to where x3 is originally, and this
continues until there are no collisions.

• Another case is that we have a single cycle. (Solid arrows denote the first movement of
an element due to a collision, and dashed arrows denote a second movement due to another
collision after the cycle.)

x
x2 x3 x4

x5
x6

x3x2

x

x7 x8
· · ·

Here, the movement of x6 causes x3 to get moved once more, which propagates back to x.
This means that we now try hashing x using h(x), which displaces x7, etc., until we have no
collisions along this second path.

• A last case is that we have a double cycle, which does actually go on infinitely.
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x
x2 x3 x4

x5
x6

x3x2

x

x7 x8 x9

x10
x11

x8x7

x

Here, after we go through the first cycle, we hit another cycle in the second path; this causes
an infinite loop of collisions that never resolves.

For the analysis, suppose we define:

• T : the runtime to do an insert

• Pk: the indicator 1{have path of length ≥ k}

• Ck: the indicator 1{have cycle of length ≥ k}

• D: the indicator 1{have a double cycle}

Our expected runtime is

E[T ] ≤ E

[ ∞∑
k=1

Pk

]
︸ ︷︷ ︸
path case

+E

[ ∞∑
k=1

Ck

]
︸ ︷︷ ︸
cycle case

+ P(D = 1)︸ ︷︷ ︸
double cycle

· (10 log n+ nE[T ])︸ ︷︷ ︸
rebuild table

+ P(path/cycle of length ≥ 10 log n)︸ ︷︷ ︸
took too long

· (10 log n+ nE[T ])︸ ︷︷ ︸
rebuild table

We can show that P(Pk = 1) = exp(−Ω(k)) for m sufficiently large (say m = 4n), and we’ll also
show that P(Ck = 1) = exp(−Ω(k)). This means the sums in the first two expectations converge to
a constant.

We’ll also show that P(D = 1) and P(path/cycle of length ≥ 10 log n) are both O( 1
n2 ). This simplifies

the runtime to

E[T ] ≤ O(1) +O(1) +O

(
1

n2

)
(10 log n+ nE[T ]) +O

(
1

n2

)
(10 log n+ nE[T ])

E[T ] ≤ O(1) +O

(
1

n

)
E[T ](

1−O

(
1

n

))
E[T ] ≤ O(1)

E[T ] ≤ O(1)

Claim 3.2. P(Pk = 1) = exp(−Ω(k)), in particular P(Pk = 1) ≤ 1
2k
.
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Proof. Notice that we can have a lot of possibilities for paths of length k; we have a choice of what
elements are involved in the path. (We’ll call each of these possibilities a “realization” of a path.)

The probability by union bound gives

P(Pk = 1) ≤
∑

all possible paths
P of length k

P(have P )

Notice that the number of possible realizations is at most mk+1 · nk, since there are at most m
possibilities for each of the k + 1 vertices in the path, and n possibilities for each of the k edges in
the path.

The probability of a fixed realization is

P(a fixed realization) ≤ 1

m
· 2k

m2k
.

Here, the 1
m factor is because x must hash to the start of the path, and for each of the k edges

along the path, we have a probability at most 2
m2 for the pair of hash functions to hash to the two

locations incident to the edge.

If we fix m = 4n, then this simplifies to

P(Pk = 1) ≤ (# possible realizations) · P(fixed realization)

≤ mk+1 · nk · 2k

m2k+1

=

(
2n

m

)k

=
1

2k

To show P(Ck = 1) ≤ exp(−Ω(k)), we break up the cycle into two parts; edges before the cycle (in
blue), and edges after the cycle (in red).

x
x2 x3 x4

x5
x6

x3x2

x

x7 x8
· · ·

If the entire cycle is of length k, then at least one part must be of length at most k
2 . We can then

reuse the same analysis we did for paths to get a similar bound for cycles.

The probability of a path or cycle of length at most ≥ 10 log n is similar; it’s also exp(−10 log n) =
O( 1

n10 ), which is definitely O
(

1
n2

)
.
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Claim 3.3. P(D = 1) = O
(

1
n2

)
.

Proof.

4 Preview of Power of 2 Choices

Think about hashing with chaining; the expected length of a linked list is O(1), but the worst case
load is on the order of logn

log logn . To reduce this load, we can instead pick two random hash functions
h, g : [U ]→ [m]. We’ll also augment the hash table to keep track of the length of the linked list.

When we insert x, we look at both h(x) and g(x), and choose the linked list with fewer items.
Intuitively, this can only do better than with only one hash function. With high probability, max
load turns out to be at most ln lnn

ln 2 +Θ(1). (This essentially goes from a max load of O(lnn) to
O(ln lnn).)
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