
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 14 – March 2nd, 2023

Prof. Jelani Nelson Scribe: Nikki Suzani, Eshaan Bhansali

1 Power of Two Choices

The power of two choices [1] [2] takes two random hash functions h, g that map [U] → n, and finds

that the expected max load on each slot goes from ln(n)
ln ln(n) to ln ln(n)

ln(2) +O(1). Note that with k ≥ 2

hash functions, there is only a constant factor improvement, with the ln(2) in the denominator
changing to ln(k).

To prove this, we’ll do analysis based on height. Given x ∈ DB, we define the height of some x
to be its height in the stack at the time it was inserted; for example, if x was the hth item put
into its bucket, then its height is h. Our goal is to show that when we get to some height of ln ln(n)

ln(2)
the number of elements with that height is less than 1. Since this number must be an integers,
this means that we expect no elements with that height, and the expected max load is bounded by
ln ln(n)
ln(2) +O(1).

Define Bi to be the number of slots with at least i items. Let’s look at the ratio Bi
n . If we can show

that this fraction is less than 1
n we have proven the statement, since it implies there are less than 1

buckets with the given load.

Note that clearly B1
n ≤ 1, as we have n slots. Further, if a bucket has height i+ 1, then there is one

unique person in the bucket with height i+ 1.

Bi+1 ≤
∑
x

1{height(x) ≥ i+ 1}

We can now take the expectation.

E[Bi+1] ≤
∑
x

E{height(x) ≥ i+ 1} (1)

E[Bi+1] ≤
∑
x

P{height(x) ≥ i+ 1} (2)

E[Bi+1] ≤ n ∗ P(height(x) for some x ≥ i+ 1) (3)

= n ∗ P(height(x)) ≥ i+ 1 (4)

= n

(
Bi

n

)2

(5)

=
B2

i

n
(6)

1

Here, (5) comes from the fact that all these Bi are random variables related to each other, based on
the same hash functions. Pretend the previous Bj for j ∈ [1, i] are fixed. For the height to be at
least i+ 1, it means that for each of the places x hashed, each of those places had to have a load of
at least i. We know that the probability a hash function takes us to a place with load at least i is
Bi
n , so we can substitute that in here.

Dividing both sides by n, we see that

E
[
Bi+1

n

]
≤

(
Bi

n

)2

.

This analysis is a little hand-wavy, since we already considered the randomness. However, the key is
that if things are going according to their expectation, then the fraction of buckets that have load i
is decreasing in this way.

We know that B2
n ≤ 1

2 with probability 1, by counting the places where elements can hash. If things
go according to their expectation, then generally

B2+j

n
≤ 1

22j

To solve, we want Bi
n < 1

n .

1

22j
<

1

n

j ≥ log log(n)

Another paper from 2003 [3], takes d hash functions and splits up a hash table of n slots into d
buckets with n

d slots. Here, you have a hash function for each bucket, such that when you see
an item you hash it to its slot in each bucket and then put it into the least loaded bucket. (Ties
are broken by putting it into the leftmost least-loaded bucket.) Through this approach, with high

probability the max load is ln ln(n)
d·ϕd

+O(1) where ϕd is a sequence of numbers that are in the range
of [1.61, 2]. This does better than the power of two choices, since it divides by d instead of ln(d).

2 An Aside on Upcoming Lectures

Next lecture we’ll talk about spectral graph theory. This idea comes from adjacency theory, where
you are able to study properties of the graph from spectral properties of the matrix. For example,
given the eigenvalues and eigenvectors of the adjacency matrix of the graph, you can know how
many connected components are in the graph.

We’ll later talk about linear programming and how to solve linear programs, looking at the details
of the Simplex method and Interior-Point polynomial time algorithms.

2

3 Online Algorithms

Online algorithms are about decision-making in the face of uncertainty about the future. That is,
without knowing the future, the goal is to make the best decision (or close to the best decision)“on-
the-fly.” We then compare our results with an omniscient being who knows the future.

4 Pot of Gold

Let’s start with the Pot of Gold problem. Imagine a long hallway that contains equally-spaced
treasure chests on both sides. The distance between all the treasure chests is one yard. We know
that one of the treasure chests has gold inside, and the rest are empty. Each timestep, we walk to a
new chest and open it to see if the gold is inside. The goal is to walk as few yards as possible to
find the gold.

Let’s say the gold is at some position t. We know that OPT will pay t yards, since it goes directly
to where the gold is.

To compete with OPT , let’s start by trying zig-zagging, going from −1 to 1 then −2 to 2. This
leads to a lot of work taken to walk between the sides, so perhaps we should consider spending more
time on each side and checking nearby chests.

One method to do this is going through powers of two, from −1 → 2 → −4 → 8 → 16 → 32. The
reason this works is because we need to walk to the origin regardless when crossing sides, so the
time to go even further on the other side is amortized a similar amount.

Say t ∈ [2m, 2m+1]. We pay 2 · (1 + 2 + 4 + ...2k) + |t|, considering the time it takes to go back to
the origin. In the worst case, k = m+ 1, since we got almost up to t on one side, but went across
and took about 2t additional time to get to t, so we have

2 · (1 + 2 + 4 + ...2m+1)︸ ︷︷ ︸
4t

+|t| ≤ 9t.

Definition 4.1. For any algorithm A, it is C-competitive if for all inputs σ,

cost(A(σ)) ≤ C ·OPT (σ) +O(1)

Thus, by Definition 4.1, this algorithm is 9-competitive.

5 Ski Rental Problem

Imagine you and your friends are going to a ski resort, but haven’t picked an end date for your
vacation. Every day you decide whether to go home or continue skiing. The question is about
whether you should rent skis each day, or buy the skis (which has a higher fixed cost, but will be
helpful if you’re staying for a long time).

In this scenario, renting skis is $1 per day, and buying skis is a one-time cost of $b skis.

OPT , knowing that we stay for d days, will buy on day 1 if d ≥ b and rent every day otherwise.
Thus, OPT = min{d, b}.

3

A good strategy for us would be to rent for the first b− 1 days, then buy on day b. If d < b, we pay
the same that OPT does. If d ≥ b, then we pay 2b−1

b , so we’re competitive with OPT here (we are

approximately 2-competitive since 2b−1
b ≈ 2).

6 List Update Problem

Let’s explore another online algorithm problem, which is a warm-up for understanding paging and
cache update problems. Here, the goal is to maintain a linked list of items with three kinds of
operations:

• access(x): Start at the beginning of a linked list, and follow list pointers until you get to x.
The cost of this is the position of x.

• insert(x): Append x to the end of the linked list, and pay the length of the list.

• delete(x): Walk to x, then remove it, and pay the cost of the position of x.

Note that at either insert or access, after performing the operation you can choose to bring x
closer to the front by any number of positions for free.

The goal is to reduce the cost by deciding at each access or insert whether to bring x to the front
or not.

There are a few heuristics here that are natural:

• MF or Move-to-Front. That is, each time you access or insert x, you move it all the way
to the front.

• Transpose. Here, each time you access or insert x, you bring x one closer to the front.

• FC or Frequency Count which tries to keep item in decreasing access of frequency, based
on past accesses. An item goes up in frequency when you access it, so once accessed you
know where to move it to maintain the sorted order.

• SFC which stands for Static Frequency Count. Here, you look into the future and keep
items in decreasing order of the final frequency of their accesses. Note that this is the best
static ordering. Since we can’t look into the future, we can’t run this algorithm, but we can
use it to compare against.

The first paper [4] to not make any assumptions about the frequencies of possible xs found
that if items are initially sorted by time of first access, then for all sequences of operations σ,
cost(MF(σ)) ≤ 2 · cost(SFC(σ)). This showed MF is statically optimal.

What’s more interesting is that MF is not just statically optimal, but also dynamically optimal.
Let’s look at a model where transpositions cost 1 when moving something other than x toward
front, and 0 cost when moving x.

Theorem 6.1. ∀A, σ where A is any algorithm making decisions (including OPT), and σ is the
sequence of operations,

cost(MF(σ)) ≤ 2 · cost(A(σ))+ P (A(σ))︸ ︷︷ ︸
paid transpositions cost

- F (A(σ))︸ ︷︷ ︸
of free moves

- m. [5]

4

Note that this assumes A and MF start with the same ordering (possibly the empty list).

Proof. Let’s use a potential function argument where Φ(State) = the number of inversions in MF’s
list, according to the ordering in A’s list.

As a reminder, the Φ-cost of an operation = Total cost + ∆Φ, meaning Total Φ-cost = Total cost +
Φ(final) - Φ(initial).

Thus, the Total cost = Total Φ-cost + Φ(initial) - Φ(final).

Since we start with the same number of inversions, Φ(initial) = 0 and Φ(final) ≥ 0 and this then
means that Total cost ≤ Total Φ-cost.

Now, let’s look at the orderings of both MF and A. Suppose we are accessing element x, which is
in position k in MF and in position i in A. There are some t items that are before x in MF and
after x in A (the red items in Figure 1). All other non-x items in MF which are before x, must be
also before x in A (the blue items in Figure 1). Note that the number of elements in this set are
k− t− 1, since there are t elements that are before x in MF and A, x is one element, and there are
k total elements up to x.

Figure 1: Comparison of lists using algorithm A and MF.

Let’s solve for the Φ-cost here. We know that the actual cost of an operation = k. The ∆Φ here
considers the difference between A’s movements and MF moving x all the way to the front. When
MF moves x all the way to the front, the t items are now no longer inversions, and the k − t− 1
elements before x in MF and A now become inversions. Thus, ∆Φ = (k − t− 1)− t = −2t+ k − 1.
Thus, the Φ-cost is k +−2t+ k − 1 = 2(k − t)− 1. We know that k − t− 1 ≤ i− 1, since there are
only i− 1 items before x in A’s list. Then, the total cost ≤ 2i− 1. Then, summing this over all
elements we get 2 · cost(A(σ))−m. And knowing that when A does a free move to the front it only
helps Φ by costing 1 to A, we have completed the proof.

References

[1] Azar, Broder, Karlin, Upfal. Balanced Allocations (extended abstract) J. Comput. Syst. Sci.,
58(1):137–147, 1999.

[2] Michael Mitzenmacher, Andrea W. Richa, Ramesh Sitaraman. Chapter 9: The Power of Two
Random Choices: A Survey Of Techniques And Results. Handbook of Randomized Computing.
2001. Kluwer Academic Publishers.

5

[3] Berthold Vocking. How asymmetry helps load balancing. J. ACM., 50(4):568–589, 2003

[4] Jon L. Bentley, Catherine C. McGeoch. Amortized Analyses of Self-organizing Sequential Search
Heuristics. ACM, 28(4):404–411, 1985.

[5] Daniel Sleator, Robert Tarjan. Self-Adjusting Binary Search Trees. J. ACM, 50(4):568–589,
2003.

6

	Power of Two Choices
	An Aside on Upcoming Lectures
	Online Algorithms
	Pot of Gold
	Ski Rental Problem
	List Update Problem

