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Continuing Online Algorithms

Today looking at mostly paging: cache replacing policy.

1 Deterministic Paging

We consider the paging problem for a cache of size k. If a page is already in the cache, we can
access it for free. Otherwise, we will incur cost by retrieving it from disk.

Definition 1.1 (Page Fault). A page fault occurs when the cache misses, which means the page we
were requesting was not in the cache. If the cache is full, we will need to pick a page to evict to
make room for the requested page. We define the cost of a page fault cost = 1.

1.1 Last Time: List Update Problem

In the list update problem, we maintain a linked list of items. We had an operation access(x), which
incurs cost of i, where i is the position of x in the list. We can view the paging problem as a list
update problem but with a modified cost function, where

cost(i) =

{
1, if i > k.

0, otherwise.
(1)

After any access(x), we move item x to the front as the first k items in the list represents what is in
the cache. Also, we can assume some exchanges are free (for eviction).

1.2 Heuristics for Paging

Listed are heuristics for paging that choose which page to evict in the case the cache is full.

• Least Recently Used or LRU: The page that was least accessed will be evicted.

• First In First Out or FIFO: For every page in the cache, we record the timestep when they
first entered the cache. The page who has been there the longest (has the earliest timestep)
will be evicted.

• Least Frequently Used or LFU: We track a counter for each page. Each time a page is
accessed, add to its counter. We then evict the page with the smallest counter.

• Belady’s Algorithm (1966): We evict the page that will be requested furthest in the future.
This is the optimal algorithm.

Resource augmentation: cost(LRUk) ≤ k
k−h+1OPTn
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Lemma 1.2. No deterministic algorithm can have competitive ratio less than k.

Proof. Imagine there are k+1 different memory address in my machine. Given any algorithm A,
consider it currently has k things in its cache. It will bring something in and evict something. Then
I will request the evicted page. Do this is a loop. This leads to m requests =⇒ m page faults for A.

Look at OPT. It evicts the person that is requested farthest in the future. So every time it faults it
does not fault any more for the next k+1 times. So Opt faults ≤ ⌈mk ⌉ times.

Definition 1.3. 1-bit LRU

1. unmark all pages

2. request(x)

(a) if x /∈ cache If all pages are marked then unmark all. Always: Evict arbitrary unmarked
pages and finally insert x into cache

(b) mark x

Theorem 1.4. LRU/FIFO are k-competitive.

Proof. Will show 1-bit LRU is k-competitive. LRU is a way of implementing 1-bit LRU so we just
need to proof this.

Divide time into phases:

1. everytime we execute step 1 starts new phase.

2. in each phase, 1-bit LRU has ≤ k page faults.

3. OPT has ≥ 1 fault per phase.

2 Randomized Paging

2.1 Attack Model for Randomized Algorithms

• Omniscient adversary: This adversary can see the future, including the outcomes of all
our calls to random(). For example, it knows our future coin tosses. From the adversary’s
perspective, our randomized algorithm is essentially deterministic. No algorithm can beat
k-competitive against this.

• Adaptive adversary: This adversary cannot see the future, but they can see our past. They
know what random decisions we made up until now. So, they know what is in our cache. No
algorithm can beat k-competitive against this either.

• Oblivious adversary: This adversary only knows the code for our algorithm. It does not
know future outcomes for calling random(), and does not know what is in our cache. Then,
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we claim that 2Hk-competitive is possible where Hk is the kth harmonic number, defined as
Hk =

∑
j=1

1
j . We also bound Hk ≈ ln(k) +O(1).

It is known that Hk-competitive is actually possible due to [McGeoch, Sleaor, ’91] and less than Hk

is not possible.

Definition 2.1. Competitive ratio of randomized algorithm A is C if for all sequences σ:

E[cost(A(σ))] ≤ C ·OPT (σ) +O(1) (2)

2.2 Randomized Marking Algorithm

The randomized marking algorithm Mark is an implementation of 1-bit LRU, but randomized. The
modification to the algorithm is that we evict a uniformly random page, instead of an arbitrary
page.

Definition 2.2. A page is clean if it was not requested in the last phase and not requested so far
in the current phase.

Definition 2.3. A page is stale if it was requested in the last phase but not yet in the current
phase.

For future analysis, we define Di := the number of pages in OPT ’s cache at the beginning of phase
i, which are not in Mark’s cache. Equivalently, Di+1 := the number of pages in OPT ’s cache at the
end of phase i, which are not in Mark’s cache. We also define Li := the number of clean requests
in phase i.

Claim 2.4. OPT ≥ 1
2

∑
i(Li +Di+1 −Di) ≥ 1

2

∑
i L(i)

This series telescopes. D0 is 0 and Di + 1 is nonnegative, so we ultimately get an upper bound of
1
2

∑
i L(i).

Proof.
Cost of OPT in phase i ≥ max{Li −Di, Di + 1}. (3)

Let’s say we just entered phase i. In this phase, there will be Li clean requests. For Mark, all clean
page requests will end up being page faults. Since there exists Li clean requests that are not in
Mark’s cache at the beginning of the phase, it follows that there exists ≥ Li −Di requests that are
not in OPT ’s cache at the beginning of the phase.
Di+1 is the number of pages in OPT ’s cache at the end of phase i, which are not in Mark’s cache.
Everything requested in phase i is in Mark’s cache, which is k different pages. These k pages
also had to be serviced by OPT but OPT had to service an additional Di+1 that were left over
somewhere. Therefore, OPT had ≥ Di+1 page faults.

Claim 2.5. E[cost(Mark(σ)] ≤ Hk
∑

i Li

Proof. Suppose that we have seen c clean requests and s stale requests so far in this phase. At the
beginning of the phase, our cache had k stale pages. As we serviced s stale requests, s pages are
definitely in our cache and have been marked. However, the remaining k − s stale pages might not
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be in our cache, as c of them have been clobbered by clean requests. Then, the probability that a
new stale request is not in our cache is ≤ c

k−s

E(cost(Mark(σ)) in phase i ≤ L(i) +

k−L(i)−1∑
s=0

c

k − s

= L(i) +
k∑

j=L(i)+1

cj
j

≤ L(i) + Li ·Hk − Li

= Li ·Hk

Claim 2.6. Randomized marking algorithm Mark is 2Hk-competitive.

Proof. Earlier, we have proven that

E[cost(Mark(σ)] ≤ Hk

∑
i

Li (4)

and

OPT ≥ 1

2

∑
i

L(i) (5)

Then by combining the two,
E[cost(Mark(σ)] ≤ 2Hk ·OPT (6)

Claim 2.7. It is impossible to beat Hk-competitive.

Proof. At every point in time, request a uniform random page amongst pages {1, ..., k+1}. For any
algorithm A, E(cost(A(σ))) = m

k+1 for m requests. The Coupon Collector problem implies that

OPT ≤ m

k ·Hk
(7)

Next time: Online Primal-dual. Similar to LP duality to get a good competitive ratio.
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