
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 16 — March 9, 2023

Prof. Jelani Nelson Scribe: Brandon Tran, Laryn Qi

1 Outline

1. k-server + weighted paging

2. LP Duality recap

3. Online primal-dual

Project Proposal

• Lightweight assignment

• Purpose is primarily for Jelani to catch issues, give advice, provide readings, etc. earlier
rather than later

• Max 2 pages

2 k-server problem

The k-server problem can generalize many online problems. The problem is stated as follows: we
have an n-point metric space. Each of the k servers lies on a point in the metric space (k < n).
Points are coming online, and we must move some server to that point if one is not already there.
The cost of moving this server is the distance between the server and the destination point. The
total cost is the sum of the cost at each step. A metric space is just a set of points with a distance
function d defined on them. d satisfies the following properties:

1. The distance from a point x to itself is 0: d(x, x) = 0.

2. Positivity: d(x, y) > 0.

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

2.1 k-server as a general online problem

1. Paging is a special case of k-server. Points⇐⇒ pages/memory addresses. k := size of cache.
n := # of memory addresses (in reality finite, although we often think of it as infinite).
∀x ̸= y : d(x, y) = 1.

1



2. Weighted Paging: In Weighted Paging, local (in cache) pages cost less than remote pages
(e.g. must make a network call). Requesting a page is not always uniform cost. Each page p
has cost c(p). d(x, y) := 1

2(c(x)+c(y)). Initialize all k-servers to the same single NULL point.
Every time a page moves to a new point, pay half its cost. Pay the second half when it leaves
that point. At the end, move everybody back to NULL to account for remaining costs.

• (maybe) pset5 Q3: Bansal, Buchbinder, Naor showed O(lg k) competitive for weighted
paging [1].

2.2 History of k-server

1. (2k − 1)-competitive ”work function” algorithm (deterministic). Shown in [Koutsoupias,
Papadimitriou. ’95].

2. Conjecture: O(lg k) randomized is possible. However, [Bubeck, Coester, Rabani ’22] (fresh
off the press!) showed that you cannot beat Ω(lg2 k).

3. Bubeck et al found O(lg2 k lg n) [4].

3 Recap of Linear Programming and Duality

3.1 Linear Programs

In linear programming, we are given a matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn, and we wish to
find an x ∈ Rn that solves the following optimization problem:

min
x∈Rn

cTx

s.t. Ax ≥ b

x ≥ 0

where the inequalities are taken entrywise. This is called the primal linear program. We have
a set of m linear constraints, i.e. AT

1 x ≥ b1, A
T
2 x ≥ b2, ... where Ai is the ith row of A. These

constraints define a set of half-spaces. The intersection of these half-spaces is always going to be
some kind of polytope, with possibly unbounded sides – we call this the feasible region. c can be
thought of as “the direction of gravity”. Drop a marble in the feasible region, and it follows the
direction of c. No matter what, it will eventually end up in a corner.
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Figure 1: Visualization of an example primal optimization problem

A few notes on the generality of this form of the primal problem:

• We can convert a ≥ constraint to a ≤ constraint by multiplying by −1.

• An equality constraint is just a ≥ AND ≤ constraint. Convert the ≥ constraing to ≤ as
described above.

• If you don’t want nonnegative constraints: any number Z can be written as Z = Z+ − Z− :
Z+, Z− ≥ 0.

• If you have maximization problem, negate c to convert to minimization.

3.2 LP Duality

In the primal, we are trying to minimize cTx subject to Ax ≥ b and x ≥ 0. We would like to
provide a lower bound on cTx. This is where duality comes in.

Consider our constraints Ax ≥ b. For the ith constraint, come up with a new variable yi and
multiply both sides by yi: AT

i xyi ≥ byi. We also require yi ≥ 0 so the the inequality is preserved.
Then, add up all of the constraints. In vector form, this gives us

yTAx = (AT y)Tx ≥ bT y

It would be great if AT y = c, because this would mean cTx ≥ bT y, and cTx is what we’re trying
to lower bound. So bT y would be a lower bound on the primal LP! It turns out, because x ≥ 0,
it is enough that AT y ≤ c, since if we’re multiplying the entries of AT y by nonnegative numbers
and adding them up, finding a lower bound on that value implies that cTx is also lower bounded.
Mathematically, (AT y)Tx ≥ bT y =⇒ cTx ≥ bT y. Therefore, we define the dual linear program as
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max
y∈Rm

bT y

s.t. AT y ≤ c

y ≥ 0

It is possible that the dual is infeasible.

Theorem 3.1 (Weak Duality). ∀x, y feasible for primal/dual respectively. costprimal(x) ≥ costdual(y).
In particular, OPT (primal) ≥ OPT (Dual).

Proof. By construction of Primal/Dual.

Theorem 3.2 (Strong Duality). Primal bounded (bounded means doesn’t go to infinity) and feasible
(green region is not empty set) implies dual is as well and OPT (primal) = OPT (Dual)

Proof. In a future lecture.

4 Online Primal-Dual

[Buchbinder, Naor ’09] x ∈ Rn starts off as 0. We see constraints (Ai, bi) come online (from primal)
which must be satisfied at each time step. We are allowed to increment entries of x, i.e. the entries
of x are only allowed to increase monotonically.

4.1 Approximating OPT

Theorem 4.1 (Approximate Complementary Slackness). Suppose x, y are feasible solutions to
the primal and dual, respectively. The primal has n variables, m constraints, dual is opposite
(m variables, n constraints). Variables become constraints and vice versa (e.g. for each primal
constraint, we multiply it by a new yi dual variable).

1. xi > 0 =⇒ ci
α ≤ (AT y)i ≤ ci (Second inequality is automatically implied by feasibility of y)

2. yi > 0 =⇒ βbi ≥ (Ax)i ≥ bi (Second inequality is automatically implied by feasibility of x)

3. If x, y satisfy 1. and 2., then cTx ≤ αβbT y.

Proof. pset5, Q2

Significance: In online algorithms, we aren’t going to get a competitive ratio of 1, we can only
approximately solve the LP. It turns out, approximate complementary slackness gives us a “recipe”
for approximating the LP. Essentially what we do is as follows: set up primal and dual LPs, and
as points come online, increment x and y such that we maintain feasible solutions to the primal
and dual and such that they satisfy the conditions of approximate complementary slackness. At
the end, the values of the two problems gives some guarantees about the quality of our solution to
the primal with respect to OPT.
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bT y ≤ OPT(Dual) = OPT(Primal) ≤ cTx ≤ αβbT y ≤ αβ ·OPT

which means
cTx ≤ αβ ·OPT

So if we maintain primal and dual feasible solutions that satisfy the conditions of approximate
complementary slackness, it means that the x we found is “not too far” from OPT.

4.2 Ski rental

Recall the ski rental problem from lecture 14. We formulate the primal LP for this problem as

min
x

Bx+
n∑

i=1

zi

s.t. x+ zi ≥ 1 ∀i
x, z ≥ 0

B is the cost of buying the skis, x ∈ {0, 1} represents whether we bought the skis or not. zi ∈ {0, 1}
represents whether or not we rented on day i. On each day, we have to have either bought or rented
skis. Below are what the matrices look like for the primal.

A =


1 1 0 . . . 0
1 0 1 . . . 0
... 0 0

. . .
...

1 0 0 . . . 1



x
z1
...
zn



c =


B
1
...
1



b =


1
1
...
1


The dual is

max
y

∑
yi

s.t.
∑

yi ≤ B

yi ≤ 1 ∀i
y ≥ 0
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Algorithm: Maintain primal+dual feasible solutions x, zi’s yi’s (initially all 0). Seeing a new
constraint is like seeing a new variable yi. Gradually increase yi until one of the dual constraints
yi is involved in (yi ≤ 1,

∑
yi ≤ B) becomes tight. Set the corresponding primal variable to 1.

In terms of approximate complementary slackness: if x > 0 =⇒ x = 1 =⇒
∑

yi = B =
=⇒ α = 1 or if zi > 0 =⇒ yi = 1 =⇒ α = 1 so in either case α = 1. Since x + zi ≤ 2
(sum of two 0-1 variables), which means β = 2. These values of α and β implies cost(algorithm
solution) ≤ 2OPT (primal) ≤ 2OPT (ski rental). Note that our primal problem formulation is not
exactly equivalent to ski rental since we’re missing integrality constraints. However, adding more
constraints to our primal problem could only increase the min, implying the second inequality:
=⇒ OPT (ski rental) ≥ OPT (primal)

In online primal-dual, it is possible (depending on the problem) to get a constraint which is impos-
sible to satisfy.

Claim 4.2. With randomization, competitive ratio of roughly e
e−1 is possible.

Idea: Will maintain fractional solutions online (i.e. not integer LP, we’ll fix this later).
Algorithm: See new day i

• if x ≥ 1, do nothing (i.e. x+ zi ≥ 1 is already satisfied)

• set yi ← 1

• zi ← 1− x

• x← (1 + 1
B )x+ 1

cB , c is to be determined.

Recall: bT y ≤ OPT ≤ cTx. If cTx ≤ γbT y, then cTx ≤ γOPT . Want to upper bound cT x
bT y
≤ γ. If

we can find this bound, this means we have a γ competitive solution.

Primal solution feasible: yi = 1 ≥ 0, zi ← 1− x, and x becomes bigger.

• zi ≥ 0 since x ≤ 1 and zi := 1− x.

• x ≥ 0 since x starts at 0 and can only increase.

• x+ zi ≥ 1 since x+ zi = x+ (1− x) = 1 ≥ 1.

Dual solution feasible: Need to show x = 1 after ≤ B days. cT x
bT y

. Look at ∆cT x
∆bT y

each day. If
these are bounded by γ, then the end result is also bounded by γ. If x isn’t already 1: ∆dual = 1.
∆primal = B∆x+1− x = B((1+ 1

B )x+ 1
cB − x) + 1− x = Bx+ x+ 1

c −Bx+1− x = 1+ 1
c . This

means ∆primal
∆dual ≤ 1 + 1

c .
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Now we’ll show that x = 1 after ≤ B days. Let r := 1
cB , q := 1 + 1

B , and xi := value of x at day i.

xi+1 ← (1 +
1

B
)xi +

1

cB
= qxi + r;

x0 := 0

x1 = r

x2 = qr + r

x3 = q2r + qr + r

. . .

xk = r
k−1∑
i=0

qi

Want: when k = B, xk = 1 (otherwise, this ruins dual feasiblity) =⇒ want r
∑B−1

i=0 qi = 1.

r
qB − 1

q − 1
=

1

cB

(1 + 1
B )B − 1
1
B

To make this 1, set c := (1 + 1
B )B − 1. (1 + 1

B )B ≈ e, so c ≈ e − 1. Which means ∆primal
∆dual ≤

1 + 1
e−1 ≈

e
e−1 . This proves the dual solution is feasible. Now, we just need to fix this fractional

solution by making it integer.

On first day added x1 to 0, then added x2 to that, then x3 to the result of that, etc. Pick u ∈ [0, 1]
unif. at random.

Figure 2: Visualization of fixing fractional solution

Buy on the first day that x exceeds u. The expected cost is B · P (buy) +
∑

i P (zi = 1). P (buy) =
P (u ≤ x) = x, P (zi = 1) = zi =⇒ E[cost(primal)] = Bx+

∑
i zi = cost(primal).
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