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1 Outline

1. Online Primal/Dual (Set Cover)

2. Approximation Algorithms (Dual Fitting for Weighted Set Cover)

2 Online Set Cover

2.1 Weighted Set Cover Problem

The weighted set cover problem is stated as follows. We are given the universe [n] and a collection
of subsets S1, S2, . . . , Sm ⊂ [n]. Each set has a corresponding weight cS . We want to choose a
subcollection A ⊂ [m] s.t.

⋃
i∈A Si = [n] and

∑
i∈A cSi is minimized.

2.2 Online Set Cover Problem

The following is a description of the online set cover problem. We are given that there are m
subsets, but we do not know their contents. Then, we are shown each element of the universe
one-by-one. When element i is shown, we are told the Sj such that i ∈ Sj . After seeing i, we must
make an irrevocable decision to choose an Sj such that i is included in the cover. We still want to
choose a subcollection A ⊂ [m] s.t.

⋃
i∈A Si = [n] and

∑
i∈A cSi is minimized.

2.3 Primal and Dual Formulations of Weighted Set Cover

The primal LP for weighted set cover is as follows:

min
x∈Rm

∑
S

cS · xS

s.t. ∀i ∈ [n],∑
S∋i

xS ≥ 1

x ≥ 0
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The dual LP for weighted set cover is as follows:

max
y∈Rn

n∑
i=1

yi

s.t. ∀S,∑
i∈S

yi ≤ cS

y ≥ 0

2.4 Randomized Online Algorithm for Unweighted Set Cover

We will discuss a randomized online algorithm for unweighted set cover with competitive ratio
O(log n logm) from [Alon, Awerbuch, Azar, Buchbinder, Naor ’09]. This paper also discusses that
the online unweighted set cover problem has a competitive ratio lower bound of Ω( logn logm

log logn+log logm),
but we won’t show this in class. We will discuss two analyses of the same algorithm.

2.5 Fractional Algorithm Description

We will first detail and analyze the fractional algorithm and then discuss how to make its solution
integral.

Algorithm 1 Online Unweighted Set Cover with Fractional Solution

1: x← (1/m, . . . , 1/m)
2: Upon seeing i ∈ Sj1, . . . , Sjk, ∀S ∈ Sj1, . . . , Sjk, until the ith constraint in the primal is satisfied,

evolve xS simultaneously in continuous time according to d
dtxS(t) = xS(t).

In other words, after i is revealed, xSjr ← etxSjr , r ∈ 1, . . . , k, where t is the minimum t s.t.
et
∑

S∋i xS ≥ 1. Clearly, we choose t = − ln
∑

S∋i xS .

2.6 Primal Only Analysis

We will show that the fractional algorithm has competitive ratio of O(logm). To do so, we will
prove two claims. The first is the following:

Claim 2.1. d
dt(costp(x)) ≤ 1 when we evolve.

Proof. Since the derivative is a linear operator,

d

dt
(costp(x)) =

d

dt
(

k∑
r=1

xSjr(t))

=
k∑

r=1

d

dt
xSjr(t)

=

k∑
r=1

xSjr(t) ≤ 1.
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In fact, this inequality is strict as we only evolve when
∑k

r=1 xSjr(t) < 1.

The second claim is the following:

Claim 2.2. The total time we are in evolution mode is ≤ OPT · lnm.

Proof. Notice that every time we evolve, we are evolving an element of OPT; if OPT does not
contain any xS that is evolving, then it cannot cover the universe. Furthermore, recall that evolving
for t time causes xS ← etxS . Hence, the maximum amount of time that xS can be evolved is
ln( 1

1/m) = lnm. Hence, the total evolution time is ≤ OPT · lnm.

Note that the initial cost = 1T [1/m, . . . , 1/m] = 1. Since we have that the total amount of time
evolving is ≤ OPT · lnm, and d

dt(costp(x)) ≤ 1 during evolution, the final cost ≤ 1+1 ·OPT · lnm =
1 +OPT · lnm.

2.7 Primal/Dual Analysis

We will now use primal/dual analysis to show that the fractional algorithm has a O(logm) com-
petitive ratio.
While covering i in the original algorithm, in the dual problem, we now evolve yi according to
d
dt(yi(t)) = 1. We initialize the yi to 0. Hence, we have

d

dt
(costd(y)) =

d

dt

n∑
i=1

yi

=

n∑
i=1

d

dt
(yi)

= 1

However, this yields a contradiction. Recall that d
dt(costp(x)) < 1, but d

dt(costd(x)) = 1. Hence, at
the end, costp(x) < costd(x). However, this contradicts weak duality, which states that

costd(y) ≤ OPT ≤ costp(x)

The issue with the prior reasoning is that we didn’t check y for dual-feasibility. In fact, y was not
dual-feasible. We now provide a y that is dual-feasible.

Claim 2.3. y
lnm is dual-feasbile

Proof. We will show that ∀S,
∑

i∈S yi ≤ lnm. Recall that we increase
∑

i∈S yi when we see an
uncovered i ∈ S online. The total time spent evolving any yi where i ∈ S is ≤ lnm since xS cannot
evolve for more than lnm time (discussed above). Since

∑
i∈S yi evolves at a rate of 1, we have∑

i∈S yi ≤ lnm. Hence, ∑
i∈S

yi
lnm

=
1

lnm

∑
i∈S

yi ≤ 1 = cS

so y
lnm is dual-feasible.
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Hence, we have the following inequalities. The first follows from weak-duality, the second by the
definition of OPT, and the third from the analysis of the derivatives above.

costd(
y

lnm
) ≤ OPT ≤ costp(x) ≤ costd(y)

=⇒ costp(x) ≤ costd(y) ≤ OPT · lnm
=⇒ costp(x) ≤ OPT · lnm

which is our desired result.

2.8 Integral Solution

We now discuss how to obtain an integral solution from our fractional solution. Our integral
solution algorithm will have an expected competitive ratio of O(log n logm).

Let r ∈ N be a chosen parameter. Then, for each S, sample i.i.d α
(S)
1 , . . . , α

(S)
r ∼ U [0, 1]. Now,

run the fractional algorithm. If at any time during the evolution, xS is greater than min(α
(S)
i ), i ∈

1, . . . , r, we take xS in the collection (set xS = 1). Now, we show the following claim regarding the
cost of our integral solution:

Claim 2.4. E[cost of integral solution] ≤ r ·E[costp(x)], where costp(x) is the cost of the fractional
solution.

Proof.

cost of int soln =
∑
S

1(took set S)

=⇒ E[cost of int soln] =
∑
S

P(took set S)

By union bound, we have ∑
S

P(took set S) ≤
∑
S

r · xS

= r
∑
S

xS

= r · costp(x)

We now show that the integral solution is feasible with high probability if we choose r on the order
of log n. With the following claim, we have the result that the expected competitive ratio of the
integral solution is O(logm log n).

Claim 2.5. Choose r on the order of lnn. Then the integral solution is feasible with high proba-
bility.
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Proof. Choose r = 100 + lnn (100 is an arbitrary big number). Then, ∀i ∈ [n],

P(i not covered) =
∏
S∋i

(1− xS)
r

≤
∏
S∋i

e−r·xS

= e−r·
∑

S∋i xS

≤ e−r

=
e−100

n

By union bound, we have P(Universe not covered) ≤ e−100; clearly, this probability can be made
arbitrarily small.

3 Approximation Algorithms (Weighted Set Cover)

We will now discuss an approximation algorithm for weighted set cover from [Chvátal ’79].

3.1 Greedy Algorithm for Weighted Set Cover

While there exists an uncovered element, take the S that minimizes cS
# newly covered elements .

3.2 Primal/Dual Analysis

When we take S into our solution, we do the following

• xS ← 1

• for each newly covered i, yi ← cS
# of newly covered elements

In each iteration, we add cS to the objective of the primal. We also add cS to the objective of the
dual. Hence, the above x, y must satisfy strong duality, as long as y is feasible. Unfortunately, y
isn’t feasible, so we must dual-fit y. We scale down by Hn, the nth harmonic number.

Claim 3.1. y
Hn

is dual feasible.

Proof. We will show that ∀S,
∑

i∈S yi ≤ cS ·Hn. Enumerate the items in S in the order that they
were covered: e1, e2, . . . , ek ∈ [n]. Consider any ei ∈ S. Since we could have taken S to cover ei at
a price of cS

k−i+1 , the greedy price for ei is ≤ cS
k−i+1 . Hence,∑

i∈S
yi ≤ cS · (

1

k
+

1

k − 1
+ · · ·+ 1)

= cS ·Hk

≤ cS ·Hn

Hence, y
Hn

is dual feasible.

Finally, we can apply the same chain of inequalities in section 2.7 above to get costp(x) ≤ OPT ·Hn.
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