
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 18 — March 16, 2023

Prof. Jelani Nelson Scribe: Nate Tausik

1 Overview

In the last lecture we introduced primal/dual analysis for approximation algorithms (in particular,
for weighted set cover). In this lecture we will give another example of primal/dual analysis for
approximation algorithms, then look at barriers to using LPs for improving approximation ratios.
Finally, we will introduce the concept of PTAS and FPTAS.

2 Vertex Cover with Primal/Dual Analysis

2.1 Vertex Cover

In vertex cover we are given an undirected graph G = (V,E), and we want to pick a subset S ⊆ V
of vertices that cover all edges in E, i.e. for each edge in E, at least one of its endpoints is in S.
Note that vertex cover can be viewed as a special case of set cover where the universe is E, and
each vertex v corresponds to the subset consisting of all edges v touches.

We start by giving a greedy algorithm for solving vertex cover.

Algorithm 1 Greedy Vertex Cover

S ← ∅
while ∃e = (u, v) ∈ E not covered do

S ← S ∪ {u, v}

Claim 2.1. Using the above algorithm, |S| ≤ 2·OPT.

For a direct proof of this claim see CS 170. We want to move towards a primal/dual analysis
of this algorithm. First, however, we hint at some open problems.

Conjecture 2.2. No polynomial time algorithm for vertex cover does better than a 2-approximation.

We do not explore the details of this conjecture. However, if it were false, it would imply that
the Unique Games Conjecture is false. The Unique Games Conjecture was proposed by Sub-
hash Khot in 2002, and claims that a certain problem called Unique Games is NP-Hard [1]. More,
broadly, if we had P=NP, we could find an exact polynomial time solution to vertex cover.

1

2.2 Primal/Dual Analysis

We will now set up the primal LP for vertex cover. As before, we can describe an integer program
whose feasible values exactly correspond to possible solutions of vertex cover. Then, we can make
a continuous version which simply drops the requirement that the variables are integers. The
continuous version is known as an LP relaxation. We give an LP relaxation for vertex cover.

min
∑
v∈V

xv such that xu + xv ≥ 1 ∀e = (u, v) ∈ E, x ≥ 0

We can dualize the LP as in last lecture. As always, we get one dual variable for each primal
constraint, and one dual constraint for each primal variable.

max
∑
e∈E

ye such that
∑

e∈E : e touches v

ye ≤ 1 ∀v ∈ V, y ≥ 0

Before using the LPs to prove Claim 2.1, we note that there is another simple 2-approximation
algorithm.

Remark 2.3. Consider solving the LP relaxation. For each edge e = (u, v), one of xu or xv must
be at least 0.5, since otherwise the solution is not feasible. So, if we round xv to the nearest integer
for all v ∈ V (rounding 0.5 up), we get a feasible solution which is at most twice the cost of the
optimal cost of the LP relaxation. The optimal cost of the LP relaxation is at most OPT for vertex
cover, so we have a 2-approximation for vertex cover.

Now, we finally perform the primal/dual analysis, giving a proof of Claim 2.1.

Proof of Claim 2.1. We run the greedy Algorithm 1, and consider how the variables in our primal
and dual LPs update to reflect the progress of the algorithm.

• Initially we have no vertices in our cover, so set x,y← 0

• Whenever e = (u, v) causes us to add its vertices to S, we set xu ← 1, xv ← 1, ye ← 1

So, based on the update rules, we see that the cost(Primal)= 2·cost(Dual) at each step. If our
solutions x and y are feasible, then by the same argument as last time, we have

cost(Dual) ≤ OPT ≤ cost(Primal) = 2 · cost(Dual) ≤ 2 ·OPT

and we are done. The primal is feasible because by the time the algorithm finishes, we have covered
all uncovered edges. Also, the dual is feasible because once ye = 1 for some e = (u, v), both u and
v are in the cover, so we will not get yf = 1 for any other edge f which touches u or v. So, we are
done.

3 Integrality Gaps

Now, we will apply the primal/dual reasoning to find barriers to improving approximation ratios
via LP. In particular, we will find lower bounds on the approximation ratios that LP relaxations
can give us for vertex cover and set cover. The main insight is to notice that in our primal/dual
proof above, OPT was actually OPT of the LP relaxation while what we really want is OPT of
the integer program (which is the same as the true OPT of our original problem). If there is a gap
between the OPT of the IP and the OPT of the LP relaxation, this puts a bound on how good our
approximation from the LP relaxation can be. This idea naturally leads us to our key definition.

2

Definition 3.1. The integrality gap is

worst case over all problem instances for OPT of the IP

worst case over all problem instances for OPT of the relaxed LP

The integrality gap is the barrier to improving approximation ratios with the relaxed LP.

3.1 Vertex Cover

In this section, we will show that the integrality gap for vertex cover is at least ≈ 2, where the
relaxed LP is as given above. Since we already gave a 2-approximation algorithm, we know the
integrality gap has an upper bound of ≈ 2. Thus, combining these facts, we may conclude that the
integrality gap is ≈ 2. To show the lower bound, we must find an example of vertex cover where
the ratio of cost of IP to cost of relaxed LP is ≈ 2.

Claim 3.2. The integrality gap for vertex cover with the relaxed LP as above is at least ≈ 2.

Proof. Consider G = Kn, the complete graph on n vertices. We claim OPT of the IP is n − 1. It
cannot be more than n− 1 since every edge is connected to two distinct vertices, and so certainly
taking all but one vertex suffices. If we could cover the graph with fewer vertices, there would be
some pair of vertices {u, v} not in the cover. Since G is complete, there is an edge (u, v) which is
not being covered, a contradiction. So, OPT of the IP is n− 1. By taking x = (12 ,

1
2 , . . . ,

1
2), we see

that OPT of the relaxed LP is at most n
2 . So, the integrality gap is at least n−1

n/2 ≈ 2.

It is worth noting that this argument, which shows the best LP-based approximation algorithm
gives 2·OPT, follows the typical pattern. The pattern is to prove the lower bound via an example
(Claim 3.2) and to prove the upper bound via an algorithm (Claim 2.1). Before moving on, we
make a tangential remark with an important point.

Remark 3.3. The Sherali-Adams hierarchy gives a pocedure for adding constraints to a relaxed
LP to make it more like the IP it came from. In fact, with enough constraints, one can fully capture
the original IP. However, one would need exponentially many constraints which renders the relaxed
LP useless. The important takeaway is the LP relaxation is not unique; our bounds (for instance,
those in the section above) are dependent on the specific relaxtion.

As another tangential remark in a different direction, we will see in a future lecture that we can
improve on some results using semidefinite programming, or other schemes that are more flexible
than linear programming. For now, however, we continue with linear programming.

3.2 Set Cover

Recall the relaxed LP for set cover from last time, copied below.

min
∑
S∈C

xS such that
∑
S∋i

xS ≥ 1 ∀i ∈ [n], x ≥ 0

As in the last section, we will give an example to put a lower bound on the integrality gap for set
cover with the above relaxed LP.

For some q > 0, put U = Fq
2 \ {0}, the nonzero q-dimensional vectors mod 2. Notice |U | = 2q − 1.

Put C as the collection of subsets Sv = {α ∈ U | ⟨α, v⟩ ≡ 1 (mod 2)} for each v ∈ Fq
2. Notice

|C| = 2q. Define m = 2q.

3

Claim 3.4. For all α ∈ U , there are m
2 values of v ∈ Fq

2 which satisfy α ∈ Sv.

Proof. We use probability. Pick v ∈ Fq
2 uniformly at random, and consider P(⟨α, v⟩ ≡ 1 (mod 2)).

Each component of α is 0 or 1. Say the first 1 is in position j∗, so α = (0, 0, . . . , 0, 1, ∗, ∗, . . . , ∗).
We have

⟨α, v⟩ =
∑

αivi = vj∗ +
∑
k>j∗

∗ · blah

The sum will be 0 or 1 mod 2. Since v is random, vj∗ will be 0 or 1 with equal probability. Since
we consider the inner product mod 2, vj∗ will flip the value of the sum with probability 1

2 . So,
P(⟨α, v⟩ ≡ 1 (mod 2)) = 1

2 . The v for which we get 1 are exactly those in Sv, and so since we pick
v uniformly,

P(⟨α, v⟩ ≡ 1 (mod 2)) =
|Sv|
m

Combining our two results, 1
2 = |Sv |

m , so |Sv| = m
2 .

Since each α ∈ U is in exactly m
2 of our subsets, we see by inspecting the relaxed LP that

x = (2
m , 2

m , . . . , 2
m) is a feasible solution. So, looking at the objective function, OPT of the relaxed

LP is at most 2. Now, we turn our attention to the IP.

Claim 3.5. OPT of the IP is at least q.

Proof. Suppose not, so we can find Sv1 , . . . , Svq−1 which are feasible. Since they cover U , we must

have
⋂q−1

i=1 S̄vi = ∅, where the complement S̄vi = {α ∈ U : ⟨α, v⟩ ≡ 0 (mod 2)}. We notice
intersecting Fq

2 with S̄vi is the same as imposing a linear constraint, so the resulting intersection
is a (q − 1)-dimensional subspace. Each additional S̄vj which we add to the intersection will give
us an additional linear constraint, and reduce the dimension of our subspace by 1 if it is a new
constraint. We only have q−1 such S̄vi ’s, so the resulting intersection will be at least q−(q−1) = 1-
dimensional. Our universe U excludes 0 ∈ Fq

2, but even so, a ≥ 1-dimensional subspace must have

a nonzero vector, so
⋂q−1

i=1 S̄vi ̸= ∅, a contradiction!

Now, q ≈ log2 |U | = log2 n, and so we have an integrality gap of at least ≈ log2 n
2 . We got a lnn

upper bound on the gap using an algorithm from last time, so we have considerably narrowed the
possible range of approximations with this relaxed LP.

Remark 3.6. There are more sophisticated examples to bring the lower bound closer to lnn. Uriel
Feige showed that if set cover can be approximated to better than (1 − o(1)) lnn in polynomial
time, then SAT can be solved in O(nlg lgn) [2].

4 PTAS and FPTAS

In the final portion of the lecture, we begin to examine PTAS and FTPAS, which are more flexible
types of approximation algorithms.

Definition 4.1. A Polynomial Time Approximation Scheme (PTAS) is a family of algorithms
indexed by ϵ such that

1. Aϵ is an approximation algorithm getting at most (1 + ϵ)·OPT.

4

2. The runtime of Aϵ is O(nf(1/ϵ)).

Notice that the runtime of a PTAS can get very bad as ϵ becomes small, depending on what f
is. We give a stronger definition.

Definition 4.2. A Fully Polynomial Time Approximation Scheme (FPTAS) is a PTAS where Aϵ

has runtime at worst poly(nϵ).

Remark 4.3. PTAS and FPTAS seem to be much more useful in the real world than generic
approximation algorithms. If you’re proposing new bus routes, it would be much better to say they
are within 1% of the optimal, not within a factor of 2 of the optimal, even if the time to find such
a route may be slower.

Remark 4.4. We can immediately rule out the existence of an FPTAS for some problems just
by assuming P ̸=NP. If vertex cover had a FPTAS, take ϵ = 1

3n . OPT cannot exceed n, so we
get within 1/3 of OPT. But the true solution will be an integer, so we really must have the OPT
solution. Thus, we solved vertex cover in polynomial time, contradicting P ̸=NP.

We now start on an extended example of (F)PTAS, which will not be finished until next lecture.

4.1 Knapsack

Recall the knapsack problem. Our input is n items, each with a value and weight pair (vi, wi),
and a knapsack which can hold W pounds. Our goal is to maximize the total value subject to the
weight limit. We can set up an integer program.

max
n∑

i=1

xivi such that
n∑

i=1

xiwi ≤W, 0 ≤ x ≤ 1, x ∈ Zn

There are a couple of exact algorithms for knapsack. The first is a familiar dynamic programming
algorithm from CS 170.

• Put f(i, w) = max value attainable with capacity w knapsack, only taking from first i items.

• Recursively define f(i, w) =


−∞, w < 0

0, i = 0

max{f(i− 1, w), vi + f(i− 1, w − wi)}, otherwise

• Starting from base cases, calculate f(n,W) with memoization.

Each calculation of f(i, w) takes constant time, so this algorithm takes O(nW) time overall. We
also sketch another dynamic programming algorithm.

• Put f(i, v) = min weight needed to take total value exactly v from the first i items.

• Set up a recurrence for f(i, v) and compute all values up to f(n, V) where V =
∑

vi.

• Find the max v such that f(n, v) ≤W .

The recurrence will again be such that each f(i, v) takes O(1) time, and finding the max takes
O(V) time. So, we take O(nV) time overall. So, we have two great solutions for knapsack! Right?

5

Remark 4.5. Both of the algorithms above are actually very slow. The space complexity of the
input weights and values will be O(lgW) and O(lg V), so our algorithms are really exponential in
the input sizes. These types of algorithms are called pseudopolynomial.

Can we find a fast 2-approximation? As usual, we start by removing the x ∈ Zn constraint
from our IP above to form a relaxed LP. We claim without proof that OPT for the relaxed LP is
given by greedily picking items based on maximum vi

wi
ratio. How does this strategy do for the IP?

We claim it does very badly.

Example 4.6. Consider a knapsack problem with 2 items, v1 = 1 + δ, w1 = 1, and v2 = W ,
w2 = W . Suppose 1 + δ ≪ W . The greedy strategy will take item 1 first since its ratio is better,
and then can take nothing else. However, we could have gotten W ≫ 1 + δ value if we took item
2. So, we actually have at best a W -approximation, which we could have gotten by just taking the
highest value item and nothing else (assuming weights are in Z).

However, this silly comparison does give us an idea for another algorithm.

• Try running the greedy ratio-based algorithm.

• Try just taking the most valuable item and nothing else.

• Do whichever strategy gives more value.

Claim 4.7. The above strategy gives us at least 1
2 ·OPT.

We will start by proving this claim next time.

References

[1] Subhash Khot. On the Power of Unique 2-Prover 1-Round Games. STOC ’02: Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, 767–775, 2002.

[2] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

6

