
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 19 — March 21, 2023

Prof. Jelani Nelson Scribe: Calvin Yan, Young Jin Park

1 Overview

In the last lecture we expanded upon primal/dual analysis for approximation algorithms, intro-
duced the integrality gap as an obstacle to approximation, and proposed a solution in the form of
polynomial time approximation schemes (PTAS) and fully polynomial time approximation schemes
(FPTAS).

In this lecture we will continue analysis of PTAS and FPTAS, specifically with regards to
knapsack, and conclude approximation algorithms with the techniques of fully polynomial-time
randomized approximation schemes (FPRAS) and SDP-rounding.

2 Last Time: Greedy 2-Approximation For Knapsack

Last lecture we claimed without proof that a greedy solution provides a 2-approximation of integral
knapsack. This lecture, we will prove that claim.

First, a recap of the algorithm. Intuitively, we can sort each item by by vi
wi
, which represents

the cost-effectiveness for some item i, then take all the elements that we can starting by the most
cost-effective item.

This is optimal for the fractional case, where we can take a fraction of each element. However,
it is not optimal for integral knapsack. We can make a very simple optimization:

(1) Take as much of each item as we can, in descending order of their effectiveness vi
wi
.

(2) Take vmax, the largest element we can afford with our space, and nothing else.

(3) Use the strongest result between (1) and (2).

Lemma 2.1. Suppose the greedy algorithm takes items 1, 2, . . . , k − 1 but not the k-th item from
our sorted sequence where v1

w1
≥ v2

w2
≥ . . . ≥ vk

wk
. Then the sum

∑k
i=1 vi > OPT(ILP).

Proof. Recall that we can write the LP

max
n∑

i=1

xivi

s.t.
n∑

i=1

xiwi ≤ W

∀i; 0 ≤ xi ≤ 1

LP relaxation tells us that

OPT = OPT(ILP) ≤ OPT(LP)

1

Since fractional knapsack took all of the first k − 1 items and some fraction (maybe 0) of the
k-th item, we know that the remaining items it took contribute less value than if it took the entirety
of the k-th item (since it has more weight and contributes more value per weight by our sorting
order). We have the strict inequality

k∑
i=1

vi > OPT(LP)

OPT(ILP) ≤ OPT(LP) <

k∑
i=1

vi

Claim 2.2. The better of (1) or (2) achieves ≥ 1
2OPT.

Proof. By Lemma 2.1,

k∑
i=1

vi =
k−1∑
i=1

vi︸ ︷︷ ︸
≤greedy

+ vk︸︷︷︸
≤vmax

> OPT

It then follows that at least one of greedy or vmax is > OPT
2 .

3 PTAS for Knapsack

As a reminder, a polynomial-time approximation scheme aims to find a result ≥ (1−ϵ)OPT in time
nf(1/ϵ).

Observation. The number of items of value > ϵOPT that the optimal solution takes is at most
⌊1ϵ ⌋.

Idea. Guess S = {1/ϵ largest items that OPT takes}.

For any particular guess S, we want to pack the remaining items well. To do this, we can use
the greedy approach on the remaining elements, i.e. the elements smaller than ϵOPT.

However, we don’t know the value of ϵOPT. How can we compare against ϵOPT if we don’t
even know its value? We can guess the lowest value of any item in S and set τ := ϵOPT slightly
lower than this, greedily packing the items with less than τ value. There are O(n) such thresholds,
so we can just try them all. An extra O(n) factor of runtime is fine, since it’s still polynomial in n.

How much do we lose from using greedy in this remaining portion? Recall from the proof for
Claim 2.2 that Greedy > OPT− vk, so we lose at most vk which is ≤ vmax ≤ ϵOPT by construction.
This gives us the value (1− ϵ)OPT, which is exactly what we want.

The final runtime is equal to

2

(number of guesses for S)× (time per S)︸ ︷︷ ︸
poly(n)

The number of guesses for S is the number of sets of ≤ 1
ϵ items we can take. A neat combina-

torical trick for computing this is to add 1
ϵ dummy items and compute the equivalent quantity

(
n+ 1

ϵ
1
ϵ

)
︸ ︷︷ ︸

Upperbounded by number of
subsets of {1,...,n} of size ≤ 1

ϵ

≤ (e(ϵn+ 1))
1
ϵ

Note the exponential dependence on 1
ϵ , which makes this PTAS, not FPTAS.

4 FPTAS for Knapsack

Recall that a fully polynomial time approximation scheme is a PTAS with worst-case poly(nϵ)

runtime. Results of Õ(n + 1
ϵ4
)[1] and Õ(n + 1

ϵ2.2
)[2] have been found, and it remains an open

problem to get this bound down to Õ(n + 1
ϵ2
), but these are beyond the scope of today’s lecture.

Instead, we will demonstrate a relatively simpler approach that achieves O(n
3

ϵ) runtime.

Starting point: We know an exact DP algo with O(nV) runtime, where V :=
∑n

i=1 vi

Construction 4.1. Construct a new knapsack problem with values v′i and same weight wi s.t.
v′i := ⌊nϵ · vi

vmax
⌋, then run the exact DP solution on the modified problem with (v′i, wi), and return

this optimal set. The runtime of this approximation is O(nV ′) = O(nn2

ϵ) = O(n
3

ϵ)

Analysis for FPTAS: Let A be the optimal set for vi and B the optimal set for v′i. Observe
that for α = n

ϵvmax
,

v′i = ⌊αvi⌋
=⇒ αvi − 1 ≤ v′i ≤ αvi

=⇒ 1

α
v′i ≤ vi ≤

1

α
(v′i + 1)

it follows that

val(B) ≥ 1

α
val(B) ≥ 1

α
val’(A)

≥ 1

α
(αval’(A)− |A|)

= val(A)︸ ︷︷ ︸
OPT

−ϵvmax

n
|A|

≥ OPT− ϵvmax

≥ (1− ϵ)OPT

3

5 FPRAS for DNF-counting

Definition 5.1. A condition is in conjunctive normal form (CNF) if it is an AND of a bunch of
ORs: (x1 ∨ x3 ∨ x7 ∨ x2) ∧ (x3) ∧ (. . .

Definition 5.2. A condition is in disjunctive normal form (DNF) if it is an OR of a bunch of
ANDs: (x1 ∧ x3 ∧ x7 ∧ x2) ∨ (x3) ∨ (. . .

Remark. CNF satisfiability is merely the SAT problem which we know to be NP-complete. DNF
is not (since we can just find an assignment that satisfies one clause!). However, we do have a
harder problem regarding DNF.

Goal: Given DNF formula ϕ, count the number of x s.t. ϕ(x) is true.

Claim 5.3. DNF-counting is NP-hard (equivalently, DNF is #P -complete).

Proof. We aim to show that SAT reduces to DNF-counting.
Given a problem in SAT form,

ϕ = (x1 ∨ x3 ∨ . . .)︸ ︷︷ ︸
C1

∧ (x7 ∨ . . .)︸ ︷︷ ︸
C2

∧ . . . ∧ (. . .)︸︷︷︸
Cm

Then

ϕ = (x1 ∨ x3 ∨ . . .) ∧ (x7 ∨ . . .) ∧ . . . ∧ (. . .)

= (x1 ∨ x3 ∨ . . .) ∨ (x7 ∨ . . .) ∨ . . . ∨ (. . .)

= (x1 ∧ x3 ∧ . . .) ∨ (x7 ∧ . . .) ∨ (. . .)

which is in disjunctive normal form. If ϕ has T solutions, then ϕ has 2n − T solutions, since the
statements are complementary and there are 2n variable assignments in total. Then ϕ is satisfiable
if and only if DNF-counting finds T < 2n.

New goal: Find T̃ such that P(|T − T̃ | > ϵT) < δ. In more intuitive terms: T̃ = (1 ± ϵ)T with
high probability.

Idea 1: Define p := T
2n . We want to know p̃ = (1 ± ϵ)p and return 2np̃. However, there is a

problem with this idea: A small p results in high estimation variance.

Example: Consider ϕ = x1 ∧ x2 ∧ . . . ∧ xn
There is only one assignment that satisfies this. When the number of solutions is exponentially

small, we will probably not sample any in polynomial time! There is a serious possibility that you
will estimate p = 0 and return 2n × 0 = 0.

Thankfully, there is a way to reexpress the estimation that ensures p isn’t too small[3]:

4

B := the set of satisfying assignments

B′ := {(i, x) : x satisfies Ci}
Si := {x : x satisfies Ci}

=⇒ B =
⋃

Si

B′ =
⊔

Si

Here ⊔ refers to the disjoint union.

New goal: estimate p′ := |B|
|B′|

Observation. |B′| ≤ m|B| =⇒ p′ ≥ 1
m

This is because each x ∈ B appears in B exactly once, but may appear in B′ up to m times (for
i = 1, 2, . . . ,m).

Algorithm The estimation of p′ can be done using Monte Carlo sampling.

• for j = 1 to l,

– pick random (i, x) ∈ B′

– check if (i, x) ∈ B

• return # of samples in B
l

Observation. B is in bijective correspondence with a subset of B′.

B ↔ {(i, x) : Ci is the first clause that x satisfies}

How do we sample an element of B′ uniformly at random?

To sample a clause at random, pick i with probability |Si|∑m
j=1 |Sj | . To sample an assignment at

random, assign deterministically the variables in Ci such that it is satisfied, and all other variables
uniformly at random.

Analysis: Define X1, . . . , Xl as follows:

Xj :=

{
1 if jth sample ∈ B

0 otherwise

X :=

l∑
j=1

Xj ,

Observation. E(X) = p′ · l due to linearity of expectation.

5

Then apply the Chernoff bound:

P(|X − µ| > ϵµ) ≤ 2e−ϵ2µ/3

= 2e−ϵ2p′l/3

≤ 2e−ϵ2l/3m ≤ δ

l = ⌈3m
ϵ2

ln(
2

δ
)⌉

References

[1] Eugene L. Lawler. Fast Approximation Algorithms for Knapsack Problems. Math. Oper. Res.,
4(4): 339-356, 1979.

[2] Mingyang Deng, Ce Jin, Xiao Mao. Approximating Knapsack and Partition via Dense Subset
Sums. Symposium on Discrete Algorithms, 2961-2979, 2023.

[3] Richard M. Karp, Michael Luby, Neal Madras. Monte-Carlo Approximation Algorithms for
Enumeration Problems. J. Algorithms, 10(3):429-448, 1989.

6

