
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 2 — January 19, 2023

Prof. Jelani Nelson Scribe: Andrew Lin, Sanjay Gollapudi

1 Single-Source Shortest Paths

We continue our discussion of the Bernstein-Nanongkai-WulffNilsen [1] algorithm for single-source
shortest paths with negative edge weights from last lecture. In today’s lecture, we describe three
of the subroutines of the BNW algorithm. We begin with some definitions:

Definition 1.1.

wB(e) =

{
w(e), w(e) ≥ 0.

w(e) +B, w(e) < 0.

Definition 1.2. For vertex v, η(v) is the minimum number of negative edges of all shortest paths
from source s to v. PGB (v) denotes the path achieving the value of η(v).

Recall our subroutines:

1. LowDiamDecomp(G,D), which we abbreviate as LDD(G,D). This subroutine assumes that
for all edges e, w(e) ≥ 0 and returns a subset of edges E′ such that

• each SCC in G\E′ has a weak diameter ≤ D

• For all edges e, P(e ∈ E′) ≤ O(w(e) log2 n
D + n−10)

2. ElimNeg(G), which finds a good φ in time O((log n)(Σv[1 + ηG(v)])).

3. FixDAGEdges(G, {Vi}i) which assumes edges inside each Vi are non-negative and the graph
between the Vi’s is a DAG. This finds a φ making edges between any two Vi’s non-negative.

4. ScaleDown(G,∆, B), which assumes η(GB) ≤ ∆. Given a graph with w(e) ≥ −2B for all
edges e, this subroutine returns φ such that wφ(e) ≥ −B for all edges e.

1.1 ScaleDown subroutine

We use LowDiamDecomp, ElimNeg, and FixDAGEdges to create the ScaleDown subroutine.

Algorithm 1.3. ScaleDown(G, δ,B):

1. if ∆ ≤ 2 set φ2 ← 0, go to Phase 3

2. d← ∆
2

3. For all e ∈ E,wB≥0 ← max{0, wB(e)}

4. Phase 0

1

5. E′ ← LDD(GB≥0, dB)

6. Phase 1

7. H ←
⋃
iG[Vi], where V ′i s are SCCs of G\E′

8. φ1 ← ScaleDown(H, ∆
2 , B)

9. Phase 2

10. ψ ← FixDAGEdges(GBφ1\E
′)

11. φ2 ← φ1 + ψ

12. Phase 3

13. ψ′ ← ElimNeg(GBφ2)

14. return φ2 + ψ′

Figure 1: Example graph G.

The idea here is that after blowing up all edge weights by a factor of B = 2n, we can repeatedly
call ScaleDown logB times to ensure all weights are at least −1, and then we add 1 to each edge
to make all edges positive. Since each path has length at most n and all edge weights are integers,
any two vertices on the scaled-up graph with nonequal distance differ by at least 2n, but adding
1 to each vertex can only increase the distance between two vertices by at most n. Therefore we

2

preserve the ordering of any two paths, so we can run Dijkstra on the graph with the resulting edge
weights.

ScaleDown runs in Õ(m log ∆) time. It consists of 4 phases, where we generate a set E′ and
repeatedly ”fix” edges by making their weights at least −B, thus ensuring wB(e) ≥ 0 for all edges
e.

1. Phase 0 calls LowDiamDecomp on the graph. LowDiamDecomp generates a set E′ of ver-
tices, and guarantees that for any vertex v, the expected number of negative edges in a
shortest path to v with the fewest number of negative edges contains at small (O(log2 n))
number of vertices in E′.

2. Phase 1 fixes all edges within a SCC in G\E′ (the black edges in Figure 1). The recursive
call to the algorithm requires that η(HB) ≤ ∆

2 .

3. Phase 2 fixes all edges that connect two SCCs (the yellow edges in Figure 1).

4. Phase 3 fixes all edges in E′ (the pink edges in Figure 1). Since shortest paths contain only
a small number of these edges, this step is efficient.

1.2 FixDAGEdges subroutine

Now we will describe the FixDAGEdges subroutine. The requirement that edges within each of the
SCCs {Vi} is nonnegative is satisfied due to recursively calling ScaleDown on the graph of SCCs
with parameter B returning a φ with wφ(e) ≥ −B, for all edges e, so when we consider wBφ , all
weights will be positive.

Algorithm 1.4. FixDAGEdges:
First set φ(x) = 0 for all vertices x in the source SCC. For a child SCC, note that for all vertices

u, wφ(v, u) = w(v, u) + φ(u) − φ(v) where (v, u) is an edge from v in the parent SCC. We want
wφ(v, u) ≥ 0, which is equivalent to φ(u) ≤ w(v, u) + φ(v). We find the maximum t such that
t ≤ w(v, z) +φ(z) for all z in the child SCC, and set φ(z) = t for all such z. Thus all edges between
the parent and child have positive weight.

Figure 2: Example graph GBφ1 . FixDAGEdges picks prices making all yellow edges nonnegative.

3

We simply traverse the SCCs in topological order to assign a valid price to each vertex using
the above process, so this can be done in O(m+ n) time.

1.3 ElimNeg subroutine

Now we will present a weaker version of the the ElimNeg subroutine, which runs in O((m +
n)η(G) log n) time. This algorithm uses dynamic programming.

Algorithm 1.5. ElimNeg(G):

• h(v, k) := shortest path length to v using ≤ k negative edges such that the last edge is
negative

• g(v, k) := shortest path length to v using ≤ k negative edges

Recursively, we compute h and g as follows:

h(v, k) =

{
∞, k = 0

min{h(v, k − 1),minu,(u,v)∈E,w((u,v))<0{g(u, k − 1) + w(u, v)}} otherwise.

g(v, k) =

{
d+(s, v), k = 0

min{g(v, k − 1),minu∈V {h(u, k) + d+(u, v)}} otherwise

We use dynamic programming to compute g(v, k) for k = η(G).
To show the runtime of this algorithm, first note that d+(s, v) can be computed using Dijkstra in
O(m+ n) time. Calculating g from h is more complicated: rather than calculating all values of h
directly and minimizing over them, which takes O(mn) time, we instead calculate h(u, k)+d+(u, v).

To do so, at each step, we create a dummy vertex α, and for all 1 ≤ i ≤ n, we add edge
(α, vi) with weight h(vi, k). Remove all negative edges in the rest of the graph. Note that h(u, k) +
d+(u, v) is the shortest path from α to v with at most k negative edges that passes through v, so
minu∈V {h(u, k) + d+(u, v)} is the shortest path from α to v.

Figure 3: The graph created to compute h(u, k) + d+(u, v).

We use the following result without proof:

4

Claim 1.6. Dijkstra can compute the shortest paths from α to all vertices v even if some of the
edge weights out of α are negative.

Therefore we can compute the values of g(v, k) given values of g and h for k−1 in O((m+n) log n)
time. Since we want to calculate g(v, η(G)), we need to run this η(G) times, so this subroutine
takes O((m+ n)η(G) log n) in total.

1.4 Remaining details from ScaleDown

Now we will prove the claim from Phase 0 in ScaleDown.

Claim 1.7. For all vertices v,E|PGB (v) ∩ E′| = O(log2 n)

Proof. Note that since we add at most B to each negative edge, we have

wB≥0(PgB (v)) ≤ wB(PGB (v)) +B · |PGB (v) ∩ Eneg|.

By the existence of our dummy node s, wB(PGB (v)) ≤ 0 and we know |PGB (v) ∩ Eneg| ≤ ηGB (v).
Therefore, wB≥0(PgB (v)) ≤ ηGB (v) ·B. From this we use the fact that LDD guarantees P(e ∈ E′) ≤
O(w(e) log2 n

D + n−10) to get

E|PGB (v) ∩ E′| = E

∣∣∣∣∣∣
∑

e∈P
GB (v)

1{e ∈ E′}

∣∣∣∣∣∣ (1)

=
∑
e∈E

P(e ∈ E′) (2)

≤ O(
wB≥0(PGB (v)) log2 n

D
+ n−9) (3)

= O(
ηGB (v)B log2 n

D
+ n−9) (4)

= O(
∆B log2 n

dB
+ n−9) (5)

= O(
∆ log2 n

∆
2

+ n−9) (6)

= O(2 log2 n+ n−9) (7)

= O(log2 n) (8)

Claim 1.8. If G contains no negative cycles, then η(HB) ≤ ∆
2 .

Proof. Take an arbitrary vertex v and look at the path PHB (v) from s to v. Let u be the vertex
on PHB (v) immediately after s (which may equal v), and let P be subpath from u onward to v
(simply remove s and the edge (s, u)). Then

dist
G

(u, v) ≤ wH(P)

≤ wHB (P)− |Eneg(HB) ∩ P | ·B
= wHB (P)− ηHB (v) ·B (9)

≤ −ηHB (v) ·B (10)

5

where Eq. (9) uses that w(s, u) = 0, and Eq. (10) uses that there is a path from s to v of length 0
(namely the single edge) and thus the shortest path can be no longer.

Now, by guarantees of LowDiamDecomp on weak diameter, we know distG(v, u) ≤ dB = ∆B/2.
Since G contains no negative cycles, combining this with distG(u, v) ≤ −ηHB (v) · B then implies
∆B/2−ηHB (v)·B ≥ 0. Rearranging gives ηHB (v) ≤ ∆/2. The claim holds since v was arbitrary.

2 Max Flow

We now consider the MaxFlow problem.

2.1 Basics

We are given the following:

• A capacitated graph G = (V,E), where each edge e ∈ E has capacity ue ∈ {1, 2, · · · , U}.

• A source node s ∈ V

• A sink node t ∈ V
We wish to find a feasible flow f ∈ Rm from s to t, maximizing val(f) =

∑
e=(s,·) fe, subject to the

following constraints:

• For all e ∈ E, fe ≤ ue

• For all e, fe ≥ 0

• For all v /∈ {s, t},
∑

e=(v,·) fe =
∑

e=(·,v) fe

Intuitively, this means that we have positive flow through each edge, the flow through each edge is
bounded by its capacity, and the flow into a vertex is equal to the flow out.

2.2 Ford-Fulkerson with scaling

Recall that the Ford-Fulkerson algorithm [2] has a runtime O(mf∗). Given a flow f , the residual
graph Gf has capacities ue − fe. Since the source can have O(n) neighbors, and each can have
capacity up to U, in the worst case we have f∗ = O(nU) so Ford-Fulkerson takes O(mnU) time in
the worst-case scenario.

We will show that Max Flow can be solved in O(m2 logU) time. Note that all capacities
are integers and can be represented with length logU binary strings. We write the binary string
representations of capacities as rows in a grid, and append a column of zeros to teh left. We iterate
from left to right, and at each step, we first double the capacity of each edge and double the flow
through that edge, resulting in a max flow on the new capacitated graph. We then add one unit of
capacity to any edge with a 1 in the current column. Note that the flow we had previously is no
longer a max flow for the current graph.

Recall that the max flow problem is equivalent to the min cut problem, so the original flow
was a fully-saturated min cut. Since we added at most m units of capacity at the most recent
step, there exists a cut of capacity at most m on the residual graph, so the max flow through the
residual graph is at most m. Therefore running Ford-Fulkerson takes O(m2) time. There are logU
columns since we have length logU bitstrings so this takes O(m2 logU) time to find a max flow for
the original graph.

6

References

[1] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-
source shortest paths in near-linear time. Proceedings of the 63rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 600–611, 2022.

[2] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network.. . Canadian
Journal of Mathematics, 8(3):399404, 1956

7

