
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 20 — March 23, 2023

Prof. Jelani Nelson Scribes: Lance Mathias, Ajit Kadaveru

1 Overview

Today:

1. Approximations using SDP

2. Approximate solutions to the MaxCut problem

3. Approximations in another model (streaming)

After spring break:

1. LP solving algorithms

2. Algorithmic fairness (guest lecture)

3. Spectral graph theory

4. Hardness within P (guest lecture)

5. Lower bounds

2 Problem: MaxCut (unweighted)

Suppose we have undirected graph G = (V,E)

Goal: Find the cut (S, V \ S) with the maximum number of edges crossing the cut

Remark. This problem is NP-hard.

2.1 Simple approximation algorithms for MaxCut

1. Pick a random partition:
For each v ∈ V , put it in S with probability 1

2 , else put it in V \ S. Thus, each edge has a 1
2

probability of being cut.

E [# of edges in cut] = E

[∑
e∈E

1{e cut}

]
=
∑
e∈E

P(e cut) =
m

2

Since OPT ≤ m, it follows that random partition is a 1
2 -approximation.

2. Greedy:
Start with S = {1}, V \ S = {2, . . . , n}
While there exists some vertex v s.t. moving v to the other partition increases the value of
the cut, do so.
It can be shown that Greedy will also produce a cut containing at least m

2 edges and thus is
also a 1

2 -approximation, although we won’t show it here.

1

These were the best-known approximations until the SDP approximation was discovered.

3 Semidefinite Programming (SDP)

SDP is a generalization of linear programming in which we optimize over positive semidefinite
matrices, formulated as follows:

min
X

tr(CTX)

subject to

{
tr(ATi X) = bi ∀i
X � 0

(1)

Recall:

1. The trace of a square matrix is the sum of diagonal elements: tr(M) =
∑n

i=1Mii

2. tr(ATB) =
∑n

i=1

∑n
j=1AijBij

3. Recall the three equivalent definitions of positive semidefinite:

(a) ∀y, yTAy ≥ 0

(b) all eigenvalues of A are nonnegative

(c) ∃B such that BTB = A (this implies that Aij = 〈bi, bj〉, where bi, bj are columns of B)

Remark. Since SDPs generalize linear programs,

4 MaxCut Algorithms

4.1 QP Solution to MaxCut

Consider the following quadratic program:

max
x

∑
(u,v)∈E

1− xuxv
2

subject to x2v = 1 ∀v ∈ V
(2)

where xu =

{
1 if u ∈ S
−1 if u ∈ V \ S

Thus, 1−xuxv
2 = 1 if u and v are on opposite sides of the cut, and is 0 otherwise. It follows that the

QP yields an exact solution to MaxCut.
Since it is known that MaxCut is NP-hard, this means that solving this QP is also NP-hard.

2

1 2

3

Figure 1: A simple graph G

2π
3

b1

b2 b3

Figure 2: Optimal solutions to the vector program (3)

4.2 SDP Relaxation of MaxCut

It turns out that SDP is equivalent to something called ”vector programming”. Consider the
following vector programming relaxation devised by Goemans and Williamson [1]:

max
∑

(u,v)∈E

1− 〈bu, bv〉
2

subject to ‖bv‖22 = 1 ∀v ∈ V
(3)

Suppose that each bv is a column of matrix B. Then, we can construct a PSD matrix X where
X = BTB as shown above.
By the properties of PSD matrices, we can formulate an SDP which is equivalent to the above
vector program since 〈bu, bv〉 = Xuv and ‖xu‖22 = Xuu.

4.3 Integrality Gap of SDP Relaxation

Consider the graph G shown in Figure 1. By inspection, we see that the max cut is 2. It turns out
that the optimal solution to the vector program relaxation is to set vectors b1, b2, b3 to be evenly
spaced around the unit circle, as shown in Figure 2. Note that in this example, for every pair of
vectors bu, bv, 〈bu, bv〉 = −1

2 . Thus, 1−〈bu,bv〉
2 = 3

4 and so the objective value of the relatxation is
9
4 ≥ 2, and so the integrality gap is present.

3

bu
bv

θ

θ
θ

Figure 3: region in which sign(〈bu, g〉) 6= sign(〈bv, g〉)

4.4 GW Algorithm (hyperplane rounding)

Given the set of vectors {bv} obtained by solving the vector program (Equation 3), we can now
construct the cut itself. First, construct a random vector g ∼ N (0, I). Now, we can partition each
vertex bu based on sign(〈bu, g〉). We can interpret this as picking a random hyperplane parameter-
ized by g, and partitioning vertices based on which side of the hyperplane the corresponding vector
bu lies on. We calculate the approximation ratio of this algorithm as follows:

E[size of cut]

OPT(QP)
≥ E[size of cut]

OPT(SDP)
=

∑
e∈E P(ecut)∑

(u,v)∈E
1−〈bu,bv〉

2

Which follows from the fact that OPT(QP) is the exact optimum solution to MaxCut, and
OPT(SDP) ≥ OPT(QP) since SDP is a relaxation of MaxCut.

Furthermore, we can compute

P(e cut) =
2θ

2π
=
θ

π
Since (u, v) will be cut if 〈bu, g〉 and 〈bv, g〉 have opposite signs, which happens within a range

of 2θ (the shaded region in Figure 3) out of 2π total angle. So our approximation ratio is∑
(u,v)∈E

∠(u,v)
π∑

(u,v)∈E
1−cos(∠(u,v))

2

=
2

π
·

∑
(u,v)∈E ∠(u, v)∑

(u,v)∈E 1− cos(∠(u, v))

Corollary 4.1.
αi
βi
≥ z ∀i =⇒

∑
i αi∑
i βi
≥ z

Now, we define

γGW := inf
θ∈[0,2π]

2

π

θ

1− cos(θ)

By Corollary 4.1, it follows that our approximation ratio is at least γGW , which is ≈ 0.87856.
It is known that the integrality gap of the SDP relaxation can be made arbitrarily close to γGW ,

though it is not shown here.

4

5 Streaming Algorithms

Traditional data structures assume we can store all of the data we have, and are concerned with
how to organize the data. By contrast, streaming algorithms use sublinear memory (we can’t store
everything that we’ve seen), and also have to worry about what data to store. We will now consider
some examples of streaming algorithms.

Example 5.1. Counter: keep track of the number of times we increment the counter.
Naive solution: store the count as an integer, which takes log n bits.
However, there exists an approximation algorithm which is within (1 ± ε) of the actual value

with probability ≥ 1− δ using only O(log log n+ log 1
ε + log log 1

δ) bits.

Example 5.2. Count the number of distinct integers in a set. For simplicity, assume we don’t
delete elements from the set.

A trivial solution to this problem is to maintain a bitvector which keeps track of whether or
not a certain integer is in the set. This requires O(n) bits, which is too much memory!

We will now discuss an approximation algorithm which requires only O(1
ε2

log 1
δ + log n) bits.

To start, we do the following:

1. Pick a random hash function h : [n] → [0, 1] (we can’t use a truly random hash function for
reasons discussed earlier in class, so we’ll use a pseudorandom hash function, which is usually
good enough).

2. Initialize variable Z ← 1

If arbitrary element i is inserted into the set, we update our approximation using the following
procedure:

procedure insert(i)
Z ← min(z, h(i))

To query our unique item counter, we define the following:

procedure query
return 1

Z − 1

Lemma 5.3. E[Z] = 1
t+1 (order statistics)

Proof.

E[Z] =

∫ 1

0
P(Z > x)dx =

∫ 1

0
(P(h(1) > x))t dx =

∫ 1

0
(1− x)tdx =

1

t+ 1

So, our query procedure will return the correct value in expectation. However, suppose we want
a stronger guarantee on our correctness in practice, e.g. we want to show that our approximation
is within ε of the correct answer with probability at least 1− δ. To show this, we will compute the
variance of Z and apply Chebyshev’s inequality.

V ar[Z] = E[(Z − E[Z])2] = E[Z2]− E[Z]2 =
2

(t+ 1)(t+ 2)
− 1

(t+ 1)2
= Θ(

1

(t+ 1)2
)

5

Making the simplifying assumption that t ≈ t+ 1, we get

V ar[Z] ≈ Θ

(
1

t2

)
µ = E[Z] =

1

t+ 1
≈ 1

t

By Chebyshev,

P(|Z − µ| > εµ) <
V ar[Z]

ε2µ2
≈ Θ

(
1

ε2

)
But since ε is small, say 0.1, then we might get a nonsense bound like P (|Z − µ| > εµ) < 100,

which is totally useless to us.

Idea 1: We can improve this bound to something useful by storing k independent hash functions
and k separate variables Z1, . . . Zk. Each time we call update, we will update each Zi independently
using the ith hash function for all i ∈ [k].

To query, we’ll return 1
Z̃
− 1, where

Z̃ :=
1

k

k∑
i=1

Zi

is the mean of our k running variables. To compute our new success probability, we will first
compute

µ̃ = E[Z̃] =

k∑
i=1

E[Zi] = E[Z]

V ar[Z̃] =
1

k2

k∑
i=1

V ar[Zi] =
1

kt2

and apply Chebyshev’s, which gives a new upper bound on our failure probability of

P(|Z̃ − µ̃| > εµ̃) <
V ar[Z̃]

ε2µ2
≈ Θ

(
1

kε̃2

)
If we set k = C

ε2
· 1δ for appropriate constant C, then our failure probability will be upper bounded

by δ, as desired, but this may require a very large value of k which may take up more space than
we would like.

Idea 2: To further improve our algorithm so that we actually attain the desired space complexity,
consider a ”median of means” approach: Set k = Θ

(
1
ε2

)
, such that Z̃i has failure probability 1

3 .

Then, create t independent copies of Z̃, Z̃1, . . . , Z̃t. To update, we independently update each Z̃i
as defined above, and to query, we return the median of the mean estimates Z̃, Z̃1, . . . , Z̃t.

If we set t := C log 1
δ , we attain the desired space complexity, and it can be shown that our

failure probability is bounded by δ as desired by applying the Chernoff bound.

Now that we’ve seen a randomized, approximate solution to the unique items problem, a natural
follow-up is: Is a deterministic, exact solution using o(n) space possible?

6

Claim 5.4. If there exists a space-S algorithm A that does so, then there exists an injection
f : {0, 1} → {0, 1}S

Proof. We define f as follows. Given x ∈ {0, 1}n, we let S = {i : xi = 1}. We then feed each
element of S to A in a streaming fashion, then at the end define f(x) to be the memory contents
mem(A) of A. To show that this is an injection, we show how any z in the range of f can be
uniquely inverted. The inversion procedure works as follows. We first set t = A.query(), so that
t = |S|. Then for i = 1, . . . , n in order, we perform A.insert(i) then query A again to determine
whether the number of distinct elements stayed the same or increased. If it stayed the same, then
i ∈ S. If it increased, then i /∈ S. In this way we are able to recover the value of each coordinate
of x, and thus invert f .

The above lower bound proof is called an encoding argument, because it shows that if a low-
memory algorithm existed for some problem, it would imply an encoding of a set into a number of
bits that falls below the information-theoretic minimum (in this case, simply put we would have an
injection from one set into a strictly smaller set). There exist similar encoding arguments that prove
that both deterministic+approximate and randomized+exact algorithms are also both impossible
by the encoding argument.

References

[1] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, nov
1995.

7

