
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 21 — April 4, 2023

Prof. Jelani Nelson Scribe: Hanzhe Wu, Chethan Bhateja

1 Overview

In today’s lecture we will start to talk about linear programming. More specifically, we plan to
discuss

• Simplex method

• Strong duality

• Complementary slackness

Remark. We will show in the next lecture how to prove strong duality through the simplex method
(which would be a natural corollary). Strong duality can also be proved via Farkas’ lemma.

2 Linear Programming

Recall that linear programs optimize a linear function subject to linear constraints. In general, LPs
can be written with inequality constraints in canonical form

min c⊤x

s.t. Ax ≤ b

We can also write an LP in standard form with equality constraints, which is how it is typically
inputted into the simplex method.

min c⊤x

s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, n ≥ m.
In fact, any LP can be rewritten in standard form:

• For constraints ⟨ai, x⟩ ≤ bi, we can introduce slack variables si and rewrite them as ⟨ai, x⟩+
si = bi, si ≥ 0.

• For free variables xi, we can define x+i , x
−
i ≥ 0, and replace xi with x+i − x−i .

• If n < m, add dummy variables to make n ≥ m.

At some points, we will also assume the rows of A are linearly independent. This is reasonable,
since redundant and contradictory constraints can be found efficiently via row reduction.
The figure below illustrates a simple LP in canonical form.

1

3 Simplex Method

3.1 General Description

Key to the simplex method is that the optimum OPT is always achieved at a vertex, which we will
define shortly. The algorithm works roughly as follows:

1. Find starting vertex x⃗0.

2. While x⃗i is sub-optimal, greedily move to better neighboring vertex x⃗i+1.

3. HALT, return x⃗T .

Remark 3.1. Actually, the first step to find a vertex is as hard as solving the LP! There is an
efficient reduction from optimizing an LP −→ finding a feasible x for the LP via binary search on
OPT. At each iteration, we can guess that OPT ≤ α, add the constraint c⊺x ≤ α to form the new
LP below, and find a feasible x for this LP.

min 0⊤x

s.t. Ax = b

c⊤x ≤ α

x ≥ 0

For the time complexity, notice that if the result has ℓ-bit precision, then we will do O(ℓ) rounds
of binary search. In fact, our inputs A, b, c have only finite precision. If all of them have ≤ ℓ bits
precision, then the optimal solution would only have poly(nmℓ) bits precision. Thus, once α has
enough precision (which would not take long), we can claim that we have found the optimal value
α.

To further analyze LPs and the simplex algorithm, we need the following definitions.

Definition 3.2 (Feasible Set). The feasible set P is the set of all x satisfying all constraints. i.e.,
P = {x : Ax = b, x ≥ 0}.

2

Definition 3.3 (Feasible). A point x is feasible if x ∈ P .

Definition 3.4 (LP Feasibility). An LP is feasible if P ̸= ∅.

Definition 3.5 (Bounded). An LP is bounded if OPT > −∞.

Definition 3.6 (Vertex). x ∈ P is a vertex if

{
x+ y ∈ P

x− y ∈ P
=⇒ y = 0

Remark. The definition of vertex meets our intuition – for a vertex, we cannot move in opposite
directions while staying feasible!

3.2 Finding Starting Vertex

Next, we will try to find a starting vertex. We will do this by formulating another LP as follows:

min t

s.t. Ax = (1− t)b

x, t ≥ 0

t ≤ 1

This LP is not in the standard form. It is easy to transform the first group of constraints to standard

form, while for the last constraint, we can add a slack variable st and rewrite it as

{
t+ st = 1

st ≥ 0
.

Note that the optimum is t = 0 ⇐⇒ the original LP is feasible.
Now we want a starting vertex to run the simplex algorithm for the new LP. Consider x = 0⃗,
t = 1, and st = 0. We can check that these values are feasible for the LP. Next, we show the
(n + 2)-dimensional vector of (x⃗︸︷︷︸

n vars

, t, st) = (⃗0, 1, 0) is a vertex. Intuitively, this is because we are

at the edge of the feasible set for all coordinates.
Let y = (y1, · · · , yn, yn+1, yn+2) be the vector we add and subtract as in the vertex definition.

• y cannot have support (nonzero values) in the first n coordinates. Otherwise, if yi ̸= 0, either
xi + yi or xi − yi would be < 0, making the ith coordinate < 0 and violating feasibility.

• y cannot have support in the (n + 1)th coordinate. Otherwise, either t + yn+1 or t − yn+1

would be > 1, making the (n+ 1)th coordinate > 1 and violating feasibility.

• y cannot have support in the (n+ 2)th coordinate. Otherwise, either st + yn+2 or st − yn+2

would be < 0, making the (n+ 2)th coordinate < 0 and violating feasibility.

Thus, y = 0, and (x⃗, t, st) = (⃗0, 1, 0) is a vertex.

3.3 Theorems for Simplex Algorithm

Now we turn to the justification of the simplex algorithm. Why does it work? The following
theorems will convince us step by step.
Firstly, an important feature of the simplex algorithm is that it always ”jumps” among vertices
seeking optimal values. Thus, it is important for the LP to have an optimal value lying in the
vertices, as stated in the next claim. Notice that we are now dealing with a minimization problem.

3

Claim 3.7. If an LP is bounded and feasible, then ∀x ∈ P , ∃ a vertex x′ ∈ P , s.t. c⊤x′ ≤ c⊤x.

Proof. Assume, for contradiction, that x′ is not a vertex, then ∃ y ̸= 0, s.t. x + y, x − y ∈ P , i.e.,
A(x+ y) = b, A(x− y) = b︸ ︷︷ ︸

Ay=0

, and x+ y, x− y ≥ 0. Without loss of generality, let c⊤y ≤ 0 (we may

rename y ← −y). If c⊤y = 0, as ∃ j, s.t. yj ̸= 0, then WLOG, ∃ j, s.t. yj < 0 (Similarly, we can
rename y if otherwise).
Now consider two cases of y:
Case 1: ∃ j, s.t. yj < 0. Note that as x + y, x − y ≥ 0, supp(y) ⊆ supp(x), i.e., xi = 0 ⇒ yi = 0.
Consider x+ ty, t ≥ 0. If t is small enough, then adding ty to x would not violate any constraints,
since if yj ̸= 0, then xj > 0. Thus, we can gradually increase t from 0 and stop when some xi = 0.
We pick t∗ = mini:yi<0|xi

yi
|, and change x to x+ t∗y.

Case 2: ∀j, yj ≥ 0 (i.e. y ≥ 0). In this case, we can assume c⊤y < 0 since y ≥ 0 and c⊺y ≤ 0. Note
that x + ty ∈ P , ∀t ≥ 0, then OPT = −∞. Thus, case 2 contradicts our premise that the LP is
bounded and is impossible.
Notice that whenever we are in case 1, one more coordinate will be set to 0. We can repeat case
1 over and over again, setting more and more coordinates xi to 0 and making x more vertex-like.
When enough xi are 0 and at the boundary of the feasible region, there will no longer exist a
nonzero y to perturb x, making x a vertex.

Next, we will define the concept of basis, and show an equivalent condition of a point being a
vertex and the columns of A corresponding to the basis of that point in a claim.

Definition 3.8 (Basis). Given a vertex x ∈ P , the basis of x is Bx = {j ∈ [n] : xj > 0} = supp(x).

Claim 3.9. x ∈ P is a vertex ⇐⇒ columns ABx are linearly independent , where AS denotes

A restricted to the columns S.

By the claim above, since m ≤ n, a vertex can have at most m columns. Hence, a way to find
a vertex is to take m independent columns as the basis, as illustrated in the figure below.

Then, as Ax = b,

Ax =

n∑
i=1

xiAi =
∑
i∈Bx

xiAi =⇒ Ax = ABxxB = b =⇒ xB = A−1
Bx

b

where xB is the vector x restricted to the indices in Bx. Thus, to find xB, we can just take the
inverse of the restricted columns of the matrix after taking the basis. The other parts of x are just
0’s. Next, we will prove the claim.

4

Proof. We will show both directions by contraposition. First, we will show x ∈ P is not a vertex

=⇒ columns (ABx) are linearly dependent .

If x ∈ P is not a vertex, then ∃ y ̸= 0, s.t.
A(x+ y) = b

A(x− y) = b
and

x+ y ≥ 0

x− y ≥ 0
Thus, Ay = AByy

′ = 0, and By ⊆ Bx. Hence, ABxy
′′ = 0, and thus, columns of ABx are linearly

dependent.

Remark. y is an n-dimensional vector, y′ is a |By|-dimensional vector with all the zero elements
“chopped off” from y. y′′ is a |Bx|-dimensional vector generated from By and adding back several
0 entries. Thus, since y ̸= 0, by definition, y′ ̸= 0, and thus y′′ ̸= 0 and columns of ABx are linearly
dependent.

Next, we will show columns (ABx) are linearly dependent =⇒ x ∈ P is not a vertex .

Columns (ABx) are linearly dependent =⇒ ∃y ̸= 0, s.t. ABxy = 0. Thus, ∃ y′ ∈ Rn, s.t. Ay′ = 0,
and supp(y′) ⊆ Bx(we can achieve this by padding 0’s to other entries). Thus, yi ̸= 0 ⇒ xi > 0.

Hence, ∃ t > 0, s.t.

{
x+ ty′ ∈ P

x− ty′ ∈ P
=⇒ x is not a vertex.

3.4 The Simplex algorithm

Now, we will talk about the algorithm itself. The first thing we need to note is that for any vertex
x with |Bx| < m, we need to artificially add more linearly independent columns from A to make
|Bx| = m. This may cause problems, as we will see in the last part of today’s lecture.
Next, we can (finally) give a more detailed version of the simplex algorithm.

1. Start at some basis B.

2. while ∃ a better neighbor, move there

3. HALT.

Naturally, the next questions we may ask are “what does ‘a better neighbor’ mean?” and “when
should we halt?”. To answer them, if we are given a particular basis B, we may rewrite the LP as

min c⊤BxB + c⊤NxN

s.t. ABxB +ANxN = b

xB, xN ≥ 0

where N := [n]\B. Hence,

xB = A−1
B b−A−1

B ANxN =⇒ cost = c⊤BA
−1
B b︸ ︷︷ ︸

const

−c⊤BA−1
B ANxN + c⊤NxN

Therefore, we need to optimize (minimize) (cN −A⊤
N

(
A−1

B

)⊤
cB)

⊤︸ ︷︷ ︸
c̃N

xN , where xN is currently all 0.

Returning to our questions, now we know that “∃ a better neighbor” means ∃ j, s.t. (c̃N)j < 0,
and we halt if every entry of c̃N ≥ 0.

5

If we look carefully at the algorithm, we can find that changing entries in xN would also change
the entries in xB. In fact, each time we throw an index j into the basis, some indices in B would
become 0, and then we will kick them out from the basis. If there are multiple j’s that can be
chosen to throw into B, we may choose one of them freely or by some rules.
However, as we artificially add some entries to B when |Bx| < m, these entries may already be 0.
Thus, for some j ∈ N , xj may not be jacked up (increased) at all! In this case, we will add j into
B and kick out some “bad” entry from B.
That is still not the full story – we may get into an∞-loop if we don’t do this wisely! The good news
is that there are “pivot rules” for us to choose the index to throw into the basis when multiple j’s
can be chosen, and the entry to kick out from the basis when some of them are 0. For instance, we
can use the Bland’s rule [Bla77] discovered in the 1970s. Such rules would guarantee the algorithm
would terminate, but the bad news is that all known pivot rules would take exponential time in
the worse case!

4 Conclusion

The simplex method was first discovered by George Dantzig in 1947 [Dan51]. There is a famous
story on Dantzig’s solving open problems related to simplex algorithm because he mistakenly
regarded them as homework when he was a Ph.D. student in UC Berkeley.
In the next lecture, we will cover strong duality and its proof. It states that ∃ dual feasible y s.t.

c⊤x = b⊤y. The proof will be based on writing down y with basis B.

References

[Bla77] Robert G. Bland. New finite pivoting rules for the simplex method. Mathematics of
Operations Research, 2(2):103–107, 1977.

[Dan51] George B. Dantzig Maximization of a linear function of variables subject to linear inequal-
ities. Activity analysis of production and allocation, 13:339–347, 1951.

6

