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1 Overview

In the last lecture we looked at simplex for a given a linear program

min cTx

Ax = b

x ≥ 0

A ∈ Rm×n

Recall that a vertex is determined by a basis B ⊆ [n] with |B| = m. Also vB = A−1B b.
In this lecture we cover

1. Strong Duality

2. Complementary Slackness

3. Ellipsoid algorithm

4. Internal point methods (didn’t quite get to this)

2 Simplex and Strong Duality

Theorem 2.1 (Strong Duality). If the primal that is bounded and feasible, then its dual is also
bounded and feasible. Further, they have the same optimal value.

We’ll prove the above by looking at the termination condition for simplex. Recall from last
lecture that if we fix a basis B, we may rewrite our linear program as follows

min cTBxB + cTNxN

ABxB +ANxN = b

xN , xB ≥ 0

Where xB is just all components with index belonging to B and xN is the rest. Then, using the
equality constraint, we may write

xB = A−1B b−A−1B ANxN

and thus rewrite our objective as

(cN −AT
N (A−1B )T cB)TxN = c̃NxN

Simplex terminates when c̃N ≥ 0.
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2.1 Proof of Strong Duality

Now, to prove strong duality, say we run simplex and achieve cN ≥ 0 with a basis B. Note that
xB = A−1B b. Now, for strong duality, we’d want bT y = cTBxB where y is dual feasible. Note that
bT y = yT b = (cB)TA−1B b. Before we check that y is dual feasible let’s write down the dual. We get

max bT y

AT y ≤ c

Consider the slack vector s = c−AT y. Then

sB = cB −AT
B(A−1B )T cB = cB −AT

B(AT
B)−1cB = 0

and

sN = cN −AT
N (A−1B )T cB = c̃N

Since simplex terminated, cn ≥ 0 =⇒ s ≥ 0 and so y is feasible. Hence we have strong duality.

2.2 Runtime of Simplex

Since simplex essentially looks at each vertex of the constructed polytope, we can try to get a
bound on its runtime by looking at maximum distance we’d have to travel in said polytope. To do
this, construct a graph corresponding to the polytope in the obvious way. Hirsch conjectured in
’57 that that the diameter of such a graph is bounded by m − n. This conjecture was disproved
in 2011 by Santos [2] who showed that ∃P ⊆ R43 which is an intersection of 86 half spaces but its
diameter is ≥ 44.
While this was certainly disappointing, simplex still worked well in most practical cases, especially
with appropriate pivoting. In 2003, Spielman and Teng [1]showed that there exists a pivoting rule
P such that ∀I = (A, b, c), we have that E(runtime(Perturb(I))) is polynomial. Here Perturb(I)
means that we add some small amount of noise to each of the variables in our program (say Gaussian
with mean 0 and extremely small variance).

3 Complementary Slackness

Theorem 3.1 (Complementary Slackness). Say the primal and dual are both bounded and feasible
with optimal solutions x, y respectively. Then, if s = c−AT y, we have ∀i ∈ [n]

• xi > 0 =⇒ si = 0

• si > 0 =⇒ xi = 0

3.1 Proof

The proof of the above uses Strong Duality. By Theorem 2.1 we have

cTx− bT y = 0 (1)
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Now let’s consider x · s = xT s. We have

xT s = xT (c−AT y) = cTx− (Ax)T y = cTx− bT y

So, we get ∑
i

xisi = cTx− bT y (2)

from (1) and (2) we get
∑

i xisi = 0. But since x ≥ 0 and s ≥ 0, the only way we can sum to 0 is
if each summand is 0. So one term in each summand must be 0.

4 Ellipsoid Algorithm

Ellipsoid was invented by Khachiyan in 1979 [3] , 32 years after simplex. It is (weakly) polynomial
in m,n, l which represent the number of variables, constraints and bit complexity. The only re-
quirement for ellipsoid to work is a sub-routine that has the following specification - If we give the
subroutine a point as an input, it is able to give us either one constraint that the point violates,
or it tells us if the point is feasible. Note that ellipsoid doesn’t actually solve for optimum. It only
gives us a feasible point (But we’ll see how to get around this in a very straightforward way).

4.1 Geometric intuition for algorithm

Given any symmetric PSD matrix P , we describe an ellipse with centre α by

(x− α)TP (x− α) ≤ 1

Or equivalently

||B(x− α)||22 ≤ 1

Where A = BTB. The unit sphere with centre at origin is seen as a special case of this by just
letting A = I, α = 0.
A polytope, as seen before, is described by a system of inequalities Ax ≤ b.
The idea behind ellipsoid is to keep finding ellipses that cover our polytope, use the ”checking”
subroutine on some point, and then lower our volume of search accordingly
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4.2 The algorithm

Algorithm 4.1. Ellipsoid:

• Set E0 to be some extremely large sphere containing our polytope P

• for i = 0, 2, . . . k

1. Run the constraint checking subroutine on the centre of Ei

2. If the point is feasible, return

3. Else let Ei+1 be the smallest ellipsoid containing the intersection of the half-plane re-
turned in step 1 and Ei

Thankfully, the step of constructing the new ellipse is a closed form problem that can be solved
easily; Unthankfully, we don’t show the solution here.
Showing that this algorithm works relies on the fact that vol(Ek+1)/vol(Ek) ≤ exp 1

2(n+1) . Then,
since our first elliposid is an n-dimensional sphere, we have

vol(E0) =
πn/2

Γ(n2 + 1)
rn

So after k iterations, we’re bounded by something on the order of (nR)n · exp k
2(n+1) . Picking k

appropriately large, we see that the algorithm terminates.

4.3 Modifications to Ellipsoid

As we just saw, Ellipsoid only returns a feasible point, not the optimal one. However, we can
change this by simply solving the primal and dual at the same time! Then any feasible solution is
optimal. So, we input the constraints

Ax = b

AT y ≤ c
x ≥ 0

cTx = bT y

Another issue one may run into is the polytope being ”too thin”, so its volume would be extremely
low and so we’d need extremely large k for this process to terminate. We can solve this by using
our algorithm on a newly constructed polytope P ′ which is given by

P ′ = {(x, z) : Ax ≤ b+ z · 1
∀i− 2l ≤ xi ≤ 2l

∀i− 2l ≤ zi ≤ 2l

This beefs up our polytope and makes convergence more realistic.
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5 Next Lecture

In the next lecture, we’ll go over interior point methods for optimization problems.
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