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1 Overview
In the last lecture we covered strong duality, complementary slackness, and the ellipsoid algo-
rithm.

This lecture’s topic is the interior point method (IPM) for linear programming. This includes a
look at newton’s method, with a detour to gradient descent.

2 IPM
2.1 Input
The interior point method takes as input an LP of the form:

min
x

cTx

s.t. Ax ≥ b

2.2 Basic Idea
The idea is to define a series of functions:

λ ∈ [0,∞)

fλ(x) := λcTx+ p(s(x))

where p is s.t. p(z) → ∞
if any zi → 0

s(x) := Ax− b is called the slack-vector, and p is called the barrier function, as it keeps the point
interior to the LP by penalization.

For this lecture, p(s(x)) := −
∑m

i=1 ln(s(x)i).

For IPM, we start at the optimal x for λ = 0, and then gradually increase λ while continuously
adapting x to stay optimal for the current λ. In doing so, we move from the polytope’s analytical
center to the optimal vertex along the unique central path, as visualized in Fig. 1.

Since the algorithm is actually iterative and moves in discrete steps, we in reality don’t move exactly
along the central path, but stay ”close” to it. We differentiate levels of ”closeness”:

• central: x is on central path (and gradient is 0)

• awesome: Norm of gradient is is tiny (≤ 1
100)

• ok: Norm of gradient is small (≤ 1
3)
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Figure 1: Rough visualization of the IPM method

2.3 Overall architecture
The algorithm operates as follows:

1. set λ0 to be very small: λ0 = exp(−cL)

2. get x̃(λ0) that is awesome

3. for i = 1..k

• λi = (1 + γ)λi−1

• run O(1) Newton iterations on x̃(λi−1) for fλi
to obtain x̃(λi) that is awesome

(L is the precision of the problem.)

For this to work, γ needs to be sufficiently small such that if x̃(λi−1) is awesome, x(λi) is still at
least ok. Values γ = O( 1√

m
) and k = O(

√
mL) will work.

2.4 Finding x̃(λ0) in step 2.
To find our starting point, we pick an N to be really big (exp(cL)), and formulate a new LP:

min
x

cTx+Nz

s.t. Ax+ z · 1 ≥ b

0 ≤ z ≤ 2L+1

− 2L+11 ≤ x ≤ 2L+11

This LP has an easy interior point: z = ||b||0, x = 0⃗.

Using

∇fλ(x) = λc−ATS−1
x 1 (1)

∇2fλ(x) = ATS−2
x A (2)

and ||x||A =
√
xTAx for PSD x, we define ”centrality” for λ as δλ(x) := ||∇fλ(x)||(∇2fλ(x))−1 .
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This is also the norm we use for above mentioned definition of ”awesome” (δλ(x) ≤ 1
100) and ”ok”

(δλ(x) ≤ 1
3).

To now find our x̃(λ0) for step 2., we first set λ = 1, and introduce a different cost function
c′ = ATS−1

(x0,z0)
1, such that the gradient is 1c′ − ATS−1

(x0,z0)
1 = 0, giving us a point on the central

path.

To obtain a starting point on the central path for our original cost function, we apply step 3. in
reverse, decreasing λ from one towards zero. Since for sufficiently small λ the cost function does
not influence the gradient much, we can then switch back to the old cost function, and our point
is still ”awesomely close” to the central path. We have found our x̃(λ0).

2.5 3rd step
The question remains of how to decide how large k in the 3rd step should be:

let x(λ) := min
x

fλ(x)

0 =< 0, x(λ)− x∗ >

=< λc−ATS−1
x (λ)1, x(λ)− x∗ >

⇒ λcT (x(λ)− x∗) = 1TS−1
x (λ)A(x(λ)−x∗)

= 1TS−1
x(λ)(s(x(λ)− x∗))

=

m∑
i=1

s(x(λ))i − s(x∗)i
s(x(λ))i

≤=

m∑
i=1

s(x(λ))i
s(x(λ))i

= m

⇒ cT (x(λ)− x∗) ≤ m

λ

where x∗ is the perfect (central) x for λ.

If the error cT (x(λ)− x∗) should be at most ϵ, we therefore need λ to be m
ϵ .

This is the termination criterion for the 3rd step, we stop iterating if λ ≥ m
ϵ . Actually, if m

λ <
exp(−cL), we can round to the optimal vertex (proof omitted). Therefore we are done when
m
λ < exp(−cL) ⇒ λ > m · exp(cL).

Specifically, to be done we need (1 + γ)kλ0 > m · exp(cL) to hold, or derived therefrom (1 + γ)k >
m · exp(2cL), which for the number of iterations implies k ≥ 1

γ · ln(m · exp(2cL)) = O(
√
m(L +

lgm))
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3 Detour into continuous optimization
3.1 First-order methods

• given f : Rn → R, ∇f

• promised ∀x : αI ≤ ∇2f(x) ≤ βI 1

3.1.1 Basic Idea

• start with some iterate x0 ∈ Rn

• gradually move from xk to xk+1 along negative gradient, such that f(xk+1) < f(xk)

This is motivated by Taylor’s theorem:

f(xk+1) = f(xk)+ < ∇f(xk), xk+1 − xk >

+

∫ 1

0

∫ t

0
< xk+1 − xk,∇2f(xα)(xk+1 − xk) > dα dt

where xα := xk + α(xk+1 − xk) for x ∈ [0, 1]

≤ f(xk)+ < ∇f(xk), xk+1 − xk > +
β

2
||xk+1 − xk||22

Gradient descent then essentially is choosing xk+1 to minimize the last line directly above, which
gives xk+1 = xk − 1

β∇f(xk). With that, said line will be at most f(xk) − 1
2β ||∇f(xk)||22 (not

shown).

3.2 Lemma (proof omitted)

∀k : f(xk+1)− f(x∗) ≤ (1− α

β
) · (f(xk)− f(x∗))

⇒ The optimality gap can be halved in O(βα) oracle calls.

Notably, a better bound of O(
√

β
α) is achievable using ”accelerated gradient descent”, due to

Nesterov [1] in ’83. This bound is optimal.

4 Newton’s Method
• goal: min f(x)

• given: f , ∇f , ∇2f

1Notation: A ≤ B ⇔ B −A is PSD ⇔ ∀z : zTAz ≤ zTBz. This is called the Loewner order.
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• Assumption:

∀k, xα := xk + α(xk+1 − xk) :

(1− ϵ)∇2f(xk) ≤ ∇2f(xα) ≤ (1 + ϵ)∇2f(xk)

⇔

− ϵI ≤ A
1
2 (B −A)A

1
2 ≤ εI

4.1 Heart of Newton
In Newton’s method, the function f is approximated by its second-order Taylor expansion:

f(xk+1) ≈ f(xk)+ < ∇f(xk), xk+1 − xk > +
1

2
< xk+1 − xk >,∇2f(xk)(xk+1 − xk) >

xk+1 is then choosen to optimize the right-hand side of this equation, which gives:

xk+1 = xk − (∇2f(xk))
−1 · ∇f(xk)

4.1.1 Newton Progress Lemma

If f is twice differentiable and Assumption holds, then:

||∇f(xk+1)||(∇2f(xk+1))−1 ≤ ϵ

1− ϵ
||∇f(xk)||(∇2f(xk))−1
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