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1 Overview

This lecture will be on more recent work in algorithms for machine learning, in particular questions
of fairness in the context of prediction as well as multicalibration.

2 Motivating example

Suppose we are building a medical risk predictor, which takes as input an individual’s health record
and outputs a predicted probability (of some health outcome) in [0, 1]. The following cartoon, from
a 2019 paper by Obermeyer et al. [1], illustrates an example of unfairness and miscalibration — the
predicted probailities failed to accurately capture the actual probabilities. In order to be considered
for advanced medical care, black patients needed to be much sicker than white patients to qualify.

Figure 1: The predictor curves for different demographics of patients.

1



3 Formal setup

• A domain X ⊆ {0, 1}d, in which an individual x ∈ X is given by d boolean features.

• An outcome space Y = {0, 1}.

• A distribution D on X × Y .

• A predictor p : X → [0, 1].

• An optimal predictor p∗(x) = PD(y = 1 | X = x), the “actual probability” from the example.

We will assume that p∗ has a distribution complicated enough that we cannot directly learn it
to high precision. Typically, in supervised learning:

• Fix a hypothesis class of predictors H ⊆ {h : X → [0, 1]}.

• Goal : find argminh∈H ED[(h(x)− y)2].

• Concern: this framework only cares about minimizing a single objective, so it may have errors
concentrated on important demographic groups and may bias towards larger populations.

• New goal : calibration.

Definition 3.1. A predictor p : X → [0, 1] is calibrated if for all v ∈ [0, 1],

P
D
(y = 1 | p(x) = v) ≈ε v.

p is calibrated for S ⊆ X if PD(y = 1 | p(x) = v, x ∈ S) ≈ε v. For a more precise definition, a
predictor p is α-calibrated if for all v ∈ [0, 1],∣∣∣∣ED[(y − v) · 1{p(x) = y}]

∣∣∣∣ ≤ α(ε, v).

Some motivation for Definition 3.1 comes from forecasting: for a calibrated meteorologist, 70%
of the days where they predicted a 70% risk of rain should be rainy days.

We can phrase our objection to unfair predictors through calibration. For instance, the predictor
from [1] is not well-calibrated for the subpopulation S of black patients: E[y | p(x) = v, x ∈ S]≫ v.

Question 3.2. Is calibration enough?

Consider the predictor

p†(x) =

{
p∗(x) x /∈ S

µS x ∈ S,

where µS := E[y | x ∈ S] is the expected outcome of the group S. This is known as algorithmic
stereotyping, where the algorithm overlooks the actual variation in the group and treats the group
as a monolith.

Claim 3.3. p† is 0-calibrated over S.

2



Proof. Note that the only supported value of p† on S is µS .

E[y · 1{p†(x) = µS , x ∈ S}] = E[y · 1{x ∈ S}]
= E[y | x ∈ S] · P(x ∈ S)

= µS · P(x ∈ S)

= E[µS · 1{p†(x) = µS , x ∈ S}].

In calibration, we can get away with treating a group as a monolith. Thus, calibration may be
a necessary condition for fairness in prediction, but it is not enough alone.

4 Multicalibration

• The individual-level p∗ is out of reach.

• Group calibration is too weak.

We will propose something in the middle: multicalibration. We calibrate not just on the whole
population or on protected groups, but on groups we could hope to identify in the hypothesis class.

Definition 4.1. Fix a collection of subpopulations C ⊆ 2X . A predictor p̃ is (C, α)-calibrated if
for all S ∈ C and for all v ∈ support(p̃) ⊆ [0, 1],∣∣∣E[(y − p̃(x)) · 1{p̃(x) = v, x ∈ S}]

∣∣∣ ≤ α. (1)

Question 4.2. For which C can we actually enforce calibration?

Answer : “Computationally identifiable” C.

• Set membership should be efficient. That is, for all S ∈ C, 1{x ∈ S} should be able to be
evaluated efficiently.

• Auditing should be possible. Given a predictor p, we should be able to answer the question

“Does there exist a subpopulation S ∈ C that violates Eq. (1)?”

5 MCBoost algorithm

The following multicalibration boosting or HKRR algorithm is an iterative learning algorithm orig-
inating from a paper by Hebert-Johnson, Kim, Reingold, and Rothblum [2].

Algorithm 5.1 (MCBoost).

1. Initialize p0(x) =
1
2 for all x ∈ X.

2. Repeat for t = 0, 1, 2, . . .:
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3. If there exists S ∈ C and v ∈ [0, 1] such that |E[(y − pt(x)) · 1{pt(x) = v, x ∈ S}]| > α:

4. Update pt+1(x)← pt(x)− ηt · 1{pt(x) = v, x ∈ S}.

5. Else:

6. Return p̃ := pt.

Claim 5.2. If MCBoost terminates, then p̃ is (C,α)-multicalibrated.

This is clear by Definition 4.1, so the real question is why MCBoost terminates:

• Number of iterations T .

• Complexity of auditing.

Claim 5.3. Suppose for all S ∈ C, 1{x ∈ S} is computable in time s. Then p̃(x) is computable in
time O(T · s).

Lemma 5.4. MCBoost terminates in T ≤ O(α−2) iterations.

Proof. Define the potential function ϕ(p) := E[(p(x)− p∗(x))2] ≥ 0. Because ϕ(p0) =
1
4 ∈ O(1), it

suffices to show that ϕ(pt)− ϕ(pt+1) ≥ Ω(α2).

ϕ(pt)− ϕ(pt+1)

= ϕ(pt)− E[((pt(x)− y)− ηt · 1{pt(x) = v, x ∈ S})2]
=���ϕ(pt)−���ϕ(pt)− η2t · E[1{pt(x) = v, x ∈ S}] + 2ηt · E[(pt(x)− y) · 1{pt(x) = v, x ∈ S}]
≥ −α2 + 2α2

= α2,

where |E[(pt(x)− y) · 1{pt(x) = v, x ∈ S}]| > α by the auditing step, so we can choose ηt ∈ {±α}
according to the sign of E[(pt(x)− y) · 1[pt(x) = v, x ∈ S]].
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