
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 24 — April 18th, 2023

Prof. Jelani Nelson Scribe: Andrew Huang

1 Overview

Today’s and Thursday’s lectures will be on Spectral Graph Theory. Today, we’ll start it off with
definitions, do examples, before proving basic properties of Laplacians. We’ll also discuss the easier
half of Cheeger’s inequality, (the harder side will be discussed Thursday).

2 What is Spectral Graph Theory?

We know what graph theory means, and generally we can talk about its adjacency matrix. Spectral
graph theory discusses the spectrum of the matrices associated with the graphs, particularly its
eigenvalues and eigenvectors. One of these matrices that we generally look at is the adjacency
matrix, another more complicated one is the Laplacian.

In other words, “How much can we learn from G by looking at the eigenvalues, eigenvectors, of
associated matrices? (For example, adjacency matrix, or Laplacian)”

Nota Bene: The area of algorithmal graph theory is kind of this intersection between regular
and spectral graph theory, kind of trying to use this information from the matrices and then use
that to create algorithms doing something.

2.1 Intro Assumptions

In this lecture, we will be looking at undirected, weighted graphs G, where for every edge e, the
corresponding weight we ≥ 0.

Definition 2.1. The adjacency matrix A(G) is defined by

A(G)u,v =

{
we if (u, v) = e ∈ E

0 otherwise

Note that A(G) ∈ Rn×n is symetric and has nonnegative entries. So we can form this corre-
spondence:

Symmetric matrix in Rn×n

with nonnegative entries
↔ unweighted, undirected graph G

with all edge weights nonnegative

Definition 2.2. The Laplacian matrix L(G) is defined as D(G)−A(G), where D(G) is the diagonal
matrix of size n× n where D(G)u,u = degG(u) =

∑
e=(u,·)∈E we.

Some examples:

Example 2.3. For the complete graph, Kn (all with weights of 1) we have:
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7 ... n− 1

n

L(Kn) =


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1


Example 2.4. For a star graph Sn, if we define the middle vertex to be vertex 1 (one-indexing),
we have:
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n

1

L(Sn) =


n− 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


2.2 Positive Semidefiniteness of Laplacians

It turns out that the Laplacian is PSD. Let’s first recall what that means.
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Definition 2.5. A symmetric matrix M ∈ Rn×n is positive semidefinite (PSD) if any of the
following equivalent properties hold:

(1) ∀x ∈ Rn, x⊤Mx ≥ 0,

(2) ∃Q s.t. M = Q⊤Q.

(3) All eigenvalues of M are ≥ 0. (Recall that all eigenvalues of a symmetric matrix are already
real)

Note: we can write L(G) =
∑
e∈E

we ·L(e), where L(e) is the Laplacian matrix of the graph with

the same vertices but removing all edges except e from E.
In other words, for example if e = (u, v), then L(e) is the sparse matrix (with unlabelled entries

being zero):

1

1−1

−1u

v

u v

We can intuitively see that this equation (L(G) =
∑

e∈E we · L(e)) holds as the only L(e) will
affect the entry in the uth row and vth column, and for a diagonal entry, the sum

∑
.

Now, let’s go back to our claim that L is PSD. We have:

x⊤Lx =
∑
e∈E

wex
⊤L(e)x.

Now, we observe that Le = (1u −1v)(1u −1v)
⊤, where 1u is the column vector where the only

nonzero entry is a 1 in the uth entry. This is in part because (ZZ⊤)ij = ZiZj .
Thus, we have:

x⊤Lx =
∑
e∈E

we (x
⊤(1u − 1v))

2︸ ︷︷ ︸
⟨X,1u−1v⟩

=
∑
e∈E

we(xu − xv)
2 (∗)
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Claim 2.6. L is PSD.
Proof : We just showed the first condition for being PSD in Eq. (∗).

Now, this is sufficient for showing that L is PSD, but we can also directly show the second
condition for being PSD. To do this, we define the edge incidence matrix.

Definition 2.7. The edge-vertex incidence matrix, B(G), is a matrix in Rm×n, where the row
corresponding to e = (u, v) is (1u − 1v)

⊤.
For example, it may look like:

n

m

0 1 0 · · · −1 0

...

(1u − 1v)⊤

...

Now that we have the edge vertex incidence matrix, we can proceed. Let us quickly define
W ∈ Rm×m as

W =


we1 0 0 · · · 0
0 we2 0 · · · 0
0 0 we3 · · · 0
...

...
...

. . .
...

0 0 0 · · · wem

 .

We have that
L = B⊤WB = B⊤W 1/2W 1/2B = (W 1/2B)⊤(W 1/2B).

Taking Q = W 1/2B, we have proved the second condition.

Nota Bene: The theorem we’ll prove actually has roots considering manifolds in differential
geometry, which is why it will have terminology coming from it. It was then ported over to spectral
graph theory, which in a sense means that we’ll have to take analogous definitions.

3 Quick Linear Algebra Review

Recall that “v is an eigenvector of M ∈ Rn×n with eigenvalue λ ∈ C if Mv = λv.”

Claim 3.1. Suppose v1, v2 are eigenvectors with eigenvalues λ1, λ2 respectively. Furthermore,
suppose M is symmetric. Then:

(1) λ1 ̸= λ2 ⇒ ⟨v1, v2⟩ = 0 (in orther words, eigenvectors with different eigenvalues are pairwise
orthogonal)

(2) λ1 = λ2 ⇒ ∀α, β ∈ R, αv1 + βv2 is an eigenvector also with eigenvalue λ1 (In other words,
the set of all eigenvectors with fixed eigenvalue λ forms a vector space).
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Proof:

(1) We have that:
λ1v

⊤
1 v2 = (Mv1)

⊤v2 = v⊤1 Mv2 = λ2v⃗
⊤
1 v2.

Therefore, 0 = λ1v
⊤
1 v2 − λ2v

⊤
1 v2 = (λ1 − λ2︸ ︷︷ ︸

̸=0

)v⊤1 v2, and it must be the case that v⊤1 v2 = 0.

(2) M(αv1 + βv2) = αMv1 + βMv2 = αλv1 + βλv2 = λ(αv1 + βv2).

Now, for our last bit of Linear Algebra review, we state (but don’t prove) the Spectral Theorem:

Theorem 3.2 (Spectral Theorem). Let M ∈ Rn×n, symmetric.
Then, ∃ an orthonormal basis, v1, v2, · · · , vm of eigenvectors with corresponding real eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn,
Then, we have that M = V ΛV ⊤ =

∑n
i=1 λiviv

⊤
i , where

V =

 | | |
v1 v2 · · · vn
| | |

 ,Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn


Nota Bene: note that in general, AB⊤ =

∑
i aib

⊤
i .

4 Laplacians and Eigenvectors

Now, note that if λ1 = 0, if we define 1 to be the all ones vector we have

L1 =
∑
e

we L(e)︸︷︷︸
(1u−1v)(1u−1v)⊤

1

=
∑
e

we(1u − 1v)⟨1u − 1v,1⟩

= 0

= L1.

Now, note that all other eigenvectors with other eigenvalues must therefore be orthogonal to
the all-ones vector.

Now, let’s take our same two examples again.

Example 4.1. Let’s first return to the complete graph. For Kn, we have:

L(Kn) =


n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1


= n · I − 11⊤.
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Next, for any arbitrary v, let’s suppose that ⟨v,1⟩ = 0. Then,

L(Kn)v = n · Iv − 11⊤v︸︷︷︸
=0

= nv.

Therefore, v must be an eigenvector with eigenvalue of n. Clearly, the dimension of the space of
vectors orthogonal to v is n− 1, so we can create a linearly independent basis of eigenvectors.

Example 4.2. Now, let’s return to the star graph with center vertex of 1. Recall the Laplacian:

L(Sn) =


n− 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


Claim 4.3. 1u−1v is an eigenvector with eigenvalue 1 for any u, v ̸= 1 (Note that this is essentially
taking two spokes of the wheel/star and subtracting one out from the other).
Proof : We have that:

L(Sn)(1u − 1v) =
∑

e=(a,b)

we(1a − 1b)(1a − 1b)
⊤(1u − 1v)

= (11 − 1u)(11 − 1u)
⊤(1u − 1v) + (11 − 1v)(11 − 1v)

⊤(1u − 1v)

+
∑

e=(1,w)
w ̸=u,v

(11 − 1w)(11 − 1w)
⊤(1u − 1v)

= (11 − 1u)(−1) + (11 − 1v)(1) +
∑

e=(1,w)
w ̸=u,v

0

= 1(1u − 1v).

So, now it’d be nice to create a linearly independent and orthogonal basis of eigenvectors. Let’s
do so:

• We start of course with 1.

• Next, for every new vertex, we can simply add 1i − 1i+1. Clearly, since we haven’t used
vertex i + 1 before, it’ll be linearly independent to all previous vectors. We can do this for
i = 2, · · · , n− 1 (recall that we cannot consider the center vertex 1)

• Finally, we can find something that is orthogonal to all of the previous vectors. In particular,
in order to have it be orthogonal to all previous vectors, we want the 2nd to nth entries all
be equal. WLOG make them all 1. Moreover, we want the sum of the entries to be 0 in order
for it to be orthogonal to 1. Therefore, we find that we must choose: (−(n− 1), 1, 1, · · · , 1).
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5 Second Smallest Eigenvalue of Laplacian

Now, we know that v1 = 1, and λ1 = 0 is a smallest eigenvector-eigenvalue pair always. Now, what
about λ2, v2, our eigenvector-eigenvalue pair with second smallest eigenvalue?

5.1 Connected Components and the Smallest Eigenvalues

Claim 5.1. Suppose the connected components of G are C1, C2, · · · , Ck. Then,
{
1Cj

}k

j=1
forms an

(orthogonal) basis for Ker(L), and therefore, dim(eigenspace with λ = 0) = k.
Proof : First, we show that 1Cj is an eigenvector of L.

L1Cj =
∑
e

we(1u − 1v)(1u − 1v)
⊤1Cj .

First, we note that, for all edges not in Cj , the only nonnegative entries in (1u−1v)(1u−1v)
⊤ are

in columns u and v, which are not in Cj , which means that (1u −1v)(1u −1v)
⊤1Cj = 0. Then, we

can use the property that 1 is an eigenvector with eigenvalue 0 on the subgraph of G consisting of
only edges and vertices in Cj to see that

∑
e∈Cj

we(1u − 1v)(1u − 1v)
⊤1Cj = 0.

Thus, we have that (1u − 1v)
⊤1Cj = (1Cj )u − (1Cj )v.

Now, we show that the kernel is no larger than this. Suppose that x ∈ Ker(L).
Then,

x⊤Lx = 0

⇒
∑

e=(u,v)∈E
we(xu − xv)

2 = 0

⇒ ∀j = 1, · · · , k, x is constant on Cj

(so, say xi = αj ∀i ∈ Cj)

⇒ x =

k∑
j=1

αj1Cj .

5.2 A More Robust Version

Now, we’ve seen a necessary and sufficient condition for λ2 = 0 (in particular, the graph being
disconnected). But what happens if the graph is not disconnected? What properties does a graph
has a small (but strictly positive) value of λ2? For example, what if λ2 = 0.00001? Does this mean
that G is “almost” disconnected?

Now, intuitively, maybe something that we’d guess is that, say, the min cut over the graph
is very small. Unfortunately, this is not exactly true, but it’s relatively close. This is somewhat
because we can kind of choose a single vertex, and that’ll likely be a smaller cut than a more
interesting one, like a cut of n/2 and n/2 vertices, or even n − √

n and
√
n vertices. It turns out

that the right idea is called the “conductance”.

Definition 5.2. The conductance of a nonempty (and nontrivial) cut, S ⊊ VG, in a graph, ΦG(S)
is defined to be:

ΦG(S) =
w(∂S)

min{vol(S), vol(V \ S)}
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where w(E) is the sum of the weights of the edges in E, where ∂S is the set of all edges “on the
boundary of S,” or namely all edges incident to exactly one vertex in S (and exactly one vertex in
V \ S), and vol(S) =

∑
u∈S deg(u) is the “volume of S.”

Then, we define the conductance of a graph, Φ(G), to be

min
S⊂VG

S ̸=∅,VG

ΦG(S).

Nota bene: As noted earlier, a lot of this comes directly from differential geometry. In particular,
these are analogs of the area of the boundary and the volumes of set.

Theorem 5.3 (Cheeger [1]). We have the following bounds on Φ(G):

λ2

2
≤ Φ(G) ≤

√
2λ2.

Interestingly, we actually prove the right-hand (upper bound) inequality algorithmically. In
particular, in the next lecture, we will devise an algorithm using the Laplacian to partition the
graph in a strong enough way.
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