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1 Overview

In the last lecture we introduced Spectral Graph Theory, and started a bit of Cheeger’s inequality.
In this lecture we will first prove Cheeger’s inequality, and then mention other Spectral Graph
Theory topics such as spectral sparsification and Laplacian linear system solving. (Note that the
second part is actually not covered in lecture)

2 Cheeger’s Inequality

2.1 Isoperimetric Ratio and Conductance

First we recap some information that we know about Laplacian from the last lecture.

Definition 2.1. The Laplacian matrix L(G) is defined as D(G)−A(G), where D(G) is the diagonal
matrix withDu,u the weighted degree of u, which is d(u) =

∑
e=(u,·)∈E we, and A(G) is the adjacency

matrix.

We assume ∀e, we ≥ 0.

Definition 2.2. The isoperimetric ratio θG(S) is defined to be

θG(S) =
w(∂S)

min{|S|, |V \ S|}

Definition 2.3. and the conductance ΦG(S) is defined to be

ΦG(S) =
w(∂S)

min{vol(S), vol(V \ S)}

where the boundary ∂S = E ∩ (S × (V \ S)) is the set of edges that leaves S, and the volume is
vol(S) =

∑
u∈S d(u).

Then we could define
θ(G) = min

S⊆V
θG(S)

and
Φ(G) = min

S⊆V
ΦG(S)

Both the isoperimetric ratio and the conductance could be used to capture a sparse cut, where
only a small fraction of edges leave a large set of vertices. However, they get slightly different
motions since the former uses the size of the sets and the latter uses the volume.

Either could be related to the second smallest eigenvalue λ2. The isoperimetric ratio relates to
the unnormalized Laplacian, while the conductance is related to the normalized Laplacian.
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2.2 Normalized Laplacian

Definition 2.4. Given any PSD matrix M , the Rayleigh quotients are:

min
x ̸=0

x⊤Mx

x⊤x
= λ1

min
x ̸=0,x⊥v1

x⊤Mx

x⊤x
= λ2

· · ·

min
x ̸=0,x⊥v1,v2,...,vi−1

x⊤Mx

x⊤x
= λi

· · ·

max
x ̸=0

x⊤Mx

x⊤x
= λn

Specifically for Laplacians,

λ2 = min
x̸=0,x⊥1

x⊤Lx

x⊤x

We choose x = 1S − α1 with the appropriate α to make it orthogonal with 1. Since ⟨x,1⟩ =

|S| − αn,we let α = |S|
n . Then for the Rayleigh quotient

R(x) =
x⊤Lx

x⊤x

Since the α1 part of x is in the kernel of L,

x⊤Lx = 1⊤
SL1S

=
∑

u,v∈V
w(u, v) ∗ (xu − xv)

2

= w(∂S)

And x⊤x is roughly the size of S. Therefore R(x) = x⊤Lx
x⊤x

is roughly w(∂S)
|S| , which is the isoperimetric

ratio θG(S) with |S| < |V \ S|.
As for normalized Laplacian, we are actually relating Φ(G) with y⊤Ly

y⊤Dy
, where D is the same

diagonal matrix of weighted degree. Let x = D
1
2x, then

y⊤Ly

y⊤Dy
=

x⊤D− 1
2LD− 1

2x

x⊤x

which matches the form of Rayleigh quotient.
We define N = D− 1

2LD− 1
2 , and let γ1, γ2, · · · , γn to be the eigenvalues of N . Since

D− 1
2LD− 1

2

√
d⃗ = D− 1

2L1

= D− 1
2 × 0

= 0

= 0 ∗
√
d⃗

we know that γ1 = 0 and v1 =
√
d⃗. From x ⊥

√
d⃗ we also know that y ⊥ d⃗.

2



2.3 Proof of Cheeger’s Inequality

Cheeger’s Inequality for N is
γ2
2

≤ Φ ≤
√

2γ2

which is what we will prove today.
Before we start with the easier side Φ ≥ γ2

2 , we start with proving a lemma:

Lemma 2.5. ∀S ⊊ V, S ̸= ∅, w(∂S)
vol(S)vol(V \S)w(v) ≥ γ2.

Proof. Define y = 1S − σ1 with σ = vol(S)
vol(V ) .

� First we claim that our y ⊥ d⃗.

Claim. d⃗⊤y = 0

Proof.

d⃗⊤y = d⃗⊤1S − vol(S)

vol(V )
d⃗⊤1

= vol(S)− vol(S)

= 0

� y⊤Ly = w(∂S).

� As for y⊤Dy,

y⊤Dy =
∑
u∈S

d(u)(1− σ)2 +
∑
u/∈S

d(u)σ2

= vol(S)− 2σvol(S) + σ2vol(S) + σ2vol(V \ S)
= vol(S)− 2σvol(S) + σ2vol(V )

= (1− σ)vol(S)

=
vol(S)vol(V \ S)

vol(V )

� Therefore

γ2 ≤
y⊤Ly

y⊤Dy
=

w(∂S)

vol(S)vol(V \ S)
w(v)

With this lemma we can prove the easy side of Cheeger.

Proof.

γ2 ≤
w(∂S)vol(V )

vol(S)vol(V \ S)

=
w(∂S)vol(V )

min(A,B)max(A,B)

≤ 2w(∂S)

min{vol(S), vol(V \ S)}
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Now we come to the other side Φ ≤
√
2γ2.

Proof. We need to show that ∃S ⊊ V such that ΦG(S) ≤
√
2γ2.

� Define Sτ = {u : yu ≤ τ}, where y is the minimizer of y⊤Ly
y⊤Dy

. We view the vector as embedding
of the vertices on the line, and we sort V so that y1 ≤ y2 ≤ · · · ≤ yn. Then we define a family
of cuts that y1, . . . , yi are in the cut and yi+1, . . . , yn are not. Note that since d⃗ is a nonnegative
vector and y is orthogonal with it, there must be some yis to be negative and others to be
positive.

� For purpose of this proof, we want ∑
u:y−u<0

d(u) ≤ 1

2
vol(V )

∑
u:y−u>0

d(u) ≤ 1

2
vol(V )

However this is not always possible, so we instead let j be the smallest coordinate that∑j
u=1 d(u) ≥ 1

2vol(V ), and define z = y − yj1. (Note that zj = 0)

�

Claim.
z⊤Lz

z⊤Dz
≤ y⊤Ly

y⊤Dy

Proof. Define vs = y + s1. We claim that f(s) = v⊤s Dvs is minimized with s = 0 and prove
by calculus (taking derivative). Then we know z⊤Dz ≥ y⊤Dy, with z⊤Lz = y⊤Ly,we get
z⊤Lz
z⊤Dz

≤ y⊤Ly
y⊤Dy

.

�

Claim. ∃τ so that Φ(Sτ ) ≤
√

2 z⊤Lz
z⊤Dz

.

Proof. Without lost of generality, z21 + z2n = 1.

– We will define a distribution over τ so that

E
τ
[w(∂Sτ )] ≤

√
2γ2 E

τ
[min{vol(Sτ ), vol(V \ Sτ )}]

With the linearity of expetation,

E[w(∂Sτ )−
√
2γ2min{vol(Sτ ), vol(V \ Sτ )}] ≤ 0

which indicates that there exists a τ such that

w(∂Sτ )−
√
2γ2min{vol(Sτ ), vol(V \ Sτ )} ≤ 0

and this is the τ that we need.
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– So how do we define the distribution? The distribution is supported on [z1, zn], and we
define a probability density function such that ∀t ∈ [z1, zn], ϕ(t) = 2|t|. First we show
that this is a valid PDF.

Proof. ∫ zn

z1

2|t|dt = −
∫ 0

z1

2tdt+

∫ zn

0
dt =

∫ |z1|

0
2tdt+

∫ zn

0
2tdt = z21 + z2n = 1

Also we can show that

P
τ
(τ ∈ [a, b]) = |sgn(b)b2 − sgn(a)a2|

where

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

– Next we deal with the left side with a claim.

Claim.
E[w(∂S)] ≤

∑
e∈E

we|z(a)− z(b)|(|z(a)|+ |z(b)|)

Proof.

E[w(∂S)] =
∑

e=(a,b)∈E

we P[e ∈ ∂Sτ ]

=
∑

e=(a,b)∈E

we P(z(a) ≤ τ ≤ z(b))

=
∑

e=(a,b)∈E

we|sgn(z(b))z(b)2 − sgn(z(a))z(a)2|

=

{ ∑
ewe|z(b)2 − z(a)2|, sgn(a) = sgn(b)∑
ewez(b)

2 + z(a)2, sgn(a) ̸= sgn(b)

≤
{ ∑

ewe|(z(a)− z(b))(z(a) + z(b))|, sgn(a) = sgn(b)∑
ewe(z(b)− z(a))2, sgn(a) ̸= sgn(b)

≤
∑
e

we|z(a)− z(b)|(|z(a)|+ |z(b)|)

– Finally we deal with the right side with another claim, this time without proof.

Claim.
E
τ
[min{vol(Sτ ), vol(V \ Sτ )}] = z⊤Dz
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Putting the two claims together,

E[w(∂S)] ≤
∑
e

we|z(a)− z(b)|(|z(a)|+ |z(b)|)

≤
√∑

e

we(z(a)− z(b))2
√∑

e

we(|z(a)|+ |z(b)|)2

≤
√
z⊤Lz

√
2
∑
e

we(z(a)2 + z(b)2)

=
√
z⊤Lz

√
2
∑
u∈V

d(u)z(u)2

=
√
z⊤Lz

√
2z⊤Dz

=

√
z⊤Lz

z⊤Dz

√
2z⊤Dz

≤
√
2γ2min{vol(Sτ ), vol(V \ Sτ )}
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