(A.K.A. “HARDNESS IN P")

RYAN WILLIAMS
(WITH VIRGINIA VASSILEVSKA WILLIAMS’ SLIDES!)

THE CENTRAL QUESTION OF ALGORITHMS RESEARCH

“How fast can we solve fundamental
problems, in the worst case?”

etc.

— T
HARD PROBLEMS

For many problems, the known techniques get stuck:

* Very important computational problems from diverse areas
* They have simple, often brute-force, textbook algorithms...
... that are too slow.

* No improvements in many decades!

These points hold not only for NP-hard problems,
but polynomial-time problems as well!

/’—‘N

A CANONICAL (NP) HARD PROBLEM

k-SAT

Input: variables x,, ..., x, and a formula F =C; A C, A ... A C over {X,,....X,}
where each C, has the form {y, vy, v ... vy, } and each v, is either x, or —x, for some t.

Output: A boolean assignment to {x,,...,x, } that makes all clauses true (satisfies clauses),
or NO if the formula is not satisfiable (there is no such assignment)

Brute-force algorithm: try all 2" assignments, plug them in one by one
Best known algorithm: O(2"{c"/kimd) time for fixed constant c, d

\ Goes to 2",

as k grows

ANOTHER HARD PROBLEM:
LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

ATCGGGTTCCTTAAGGG Algorithms:
ATTGGTACCTITCAGG Classical O(n?) time

Find a subsequence of both strings of maximum length. ¢St known algorithm:
O(n?/ log?n) time [MP’80]

Solved daily on huge strings!

(Human genome: 3 x 10° base pairs.)

/"—‘N

IN THEORETICAL COMPUTER SCIENCE,
POLYNOMIAL TIME = EFFICIENT/EASY.

* Composition: Composing two “efficient” algorithms always results in another
“efficient” algorithm

 Model Independence: “Polynomial time” is the same notion over random
access machines, pointer machines, Turing machines, etc.

However, nobody believes that an O(n'%°) time algorithm
would be efficient in practice...

If n is large enough, then 0(n?) is already inefficient!

T

WE ARE STUCK ON MANY PROBLEMS,
EVEN O (N2)-TIME SOLVABLE ONES!

We do not know any N?-¢ time algorithm (for any € > 0) for:

® Many string matching problems:
Edit distance, Sequence local alignment, LCS, jumbled indexing ...

General form: given two sequences of length n, how similar are they?
All variants can be solved in O(n?) time by dynamic programming.

ATCGGGTTCCTTAAGGG
ATTGGTACCTTCAGG

WE ARE STUCK ON MANY PROBLEMS,
EVEN O (N2)-TIME SOLVABLE ONES!

We do not know any N2-¢ time algorithm (for any € > 0) for:

® Many string matching problems
= |\any problems in computational geometry: for example,
Given n points in the plane, are any three co-linear?

A very important primitive! ®

WE ARE STUCK ON MANY PROBLEMS,
EVEN O (N2)-TIME SOLVABLE ONES!

We do not know any N2-¢ time algorithm (for any € > 0) for:

® NMany string matching problems

®» Many problems in computational geometry
®» Many graph problems in sparse graphs, for example:

Given an n-node, O (n)-edge graph, what is its diameter?
Fundamental problem. Even approximation algorithms seem hard!

’ﬂ

WE ARE STUCK ON MANY PROBLEMS,
EVEN O (N2)-TIME SOLVABLE ONES!

We do not know any N2-¢ time algorithm (for any € > 0) for:

® NMany string matching problems

®» Many problems in computational geometry
® Many graph problems in sparse graphs
= \any other problems ...

Why are we stuck?

Are we stuck because of the same reason?

i

e

“HARD” PROBLEMS IN THE REAL WORLD

OUTLINE

* Traditional hardness in computational complexity theory

* A “fine-grained” approach to complexity theory

 Some simple results

/’—‘N

ASOURCE OF HARDNESS: TIME HIERARCHY
THEOREMS

For most natural computational models, one can prove:

for any constant ¢ = 1, and every € > 0, there exist problems
that are solvable in O(n¢) time but notin O(n°"%) time.

It remains entirely unclear how to show that a particular desired
problem in O(n®) time is not in O (n°" %) time.

[t is not even known if k-SAT is in linear time!

/’ﬁ*

WHY IS K-SAT HARD?

Theorem [Cook, Levin, Karp]:
k-SAT is NP-complete for all k > 3.

- That is, k-SAT is believed to be hard because

poly-time algorithms for k-SAT imply poly-time
algorithms for many other difficult problems.

A fine-grained theory of hardness has been developed,
which is conditional and mimics NP-completeness.

OUTLINE

* Traditional hardness in computational complexity theory

* A “fine-grained” approach to complexity theory

 Some simple results

FINE-GRAINED HARDNESS

Goal: Understand the landscape of
problems in P that people want to solve

0. Mimic NP-completeness?

1. Identify key hard problems
2. Reduce these to all (?) problems believed hard

3. Try to form equivalence classes of problems:
one of them can be solved faster
< all of them can be solved faster

FINE-GRAINED HARDNESS

Goal: Understand the landscape of
problems in P that people want to solve

0. Mimic NP-completeness?

1. Identify key hard problems
2. Reduce these to all (?) problems believed hard

3. Try to form equivalence classes of problems:
one of them can be solved faster
< all of them can be solved faster

CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on n variables [IPZ’99,CIP’09]
ETH (Exponential Time Hypothesis):

3-SAT cannot be solved in 2°" time for some constant & > 0.

SETH (Strong Exponential Time Hypothesis):
For every € > 0, there is a k such that k-SAT on n variables and
m clauses cannot be solved in 2(3€" poly(m) time.

One Idea: Use k-SAT as our hard problem,
and ETH or SETH as the hypothesis that we base hardness on.

 r—ss——kk ..
& Strengthening of SETH [CGIMPS’16] suggests these three are not equivalent...

Fix the model:
word-RAM with
O(log n) bit words

Orthogonal
vectors (OV)

FINE-GRAINED HARDNESS

0. Mimic NP-completeness?

1. Identify key hard problems
2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes of problems:
one of them can be solved faster
< all of them can be solved faster

Intuition: a(n),b(n) are known l

RED UCT'O NS runtimesfor problems A and B. ®

“A reducible to B” implies that
beating b(n)-time for B implies

* Problem Ais (a(n),b(n))-reducible to Problem B if also beating a(n)-fime for A.

for all sufficiently small € > 0, there’s a § > 0 and an O(a(n)) time algorithm

that can solve all A-instances of size n by making adaptive calls
1-6

n

solving B-instances of size n,,...,n, satisfying 2. b(n.)1¢ < a(n)

Key Property: If B is in O(b(n)'¢) time for some &,
then A is in O(a(n)®) time for some 6.

e Focus on running time exponents.

e We can build more equivalences with this. B & B (B
n{ n, N,

Most reductions don’t need this level of generality... but some do!

With more hardness ﬂu URE WlTHlN P

assumptions, one S ot '13 BRSYW’18
finds even more par§§ grap iameter [RV 3, RSVW’18],
eccentricities [AVW’16], local alignment, longest

structure) _
common substring® [AVW’14], Frechet distance -
_ . [Br’14], Edit distance [BI’15], LCS, dynamic time
N = input size warping [ABV’15, Brk’15], subtree isomorphism
n = number of [ABHVZ’15], Betweenness [AGV’15], Hamming Closest
variables, or Pair [AW15], RegExp Matching [BI16,BGL17]...
number of ’

vertices - oV.

Huge literature in comp. geometry
[GO’95, BHP9S, ...]: Geombase,

3PointsLine, 3LinesPoint, Polygonal
Containment, Planar Motion
Planning, 3D Motion Planning ...

String problems: Sequence local
alignment [AVW’14],

jumbled indexing [ACLL' 14], ...

OUTLINE

* Traditional hardness in computational complexity theory

* A “fine-grained” approach to complexity theory

 Some simple results:
Show that SETH implies fine-grained hardness in P

/FN
STRONG ETH (SETH)

SETH: for every € > 0, there is a k such that k-SAT on n variables, m
clauses cannot be solved in 2(3€)" poly(m) time.

If there is an € > 0 and an algorithm that can solve SAT on general
CNF Formulas (k-SAT for all k) on n variables and m clauses in
2(1-€n poly(m) time algorithm, then SETH is false.

FASTER OV IMPLIES SETH IS FALSE [W'04]

OV: Given a set S of N vectors

in {0, 1}9, are thereu,vE S
EX: (xp V) A (B Voxg Voxg) A(mxp Vo xy) with <u, v> =07?

Let F be a CNF formula with n vars, m clauses

. . Given F, we want to create a
Split the vars into V, and V, on n/2 vars each set of vectors S in {0,1}¢ so that

Ex: V. ={x., x,}, V, = {xs,x there is an orthogonal pairin S
= b 2ah Vo = e) if and only if F is satisfiable,

with |S|=2™"2 and d = m.

Consider all partial assignments of V, and V, : there are 2™/2 of them.

Ex: forV,: {[x; =0,x, =0], [x; =0,x, = 1], [x; = 1,x, = 0], [%y = 1,x, = 1]}

ASTER OV IMPLIES SETH IS FALSE [W’04]

Let F be a CNF formula with n vars, m clauses

Split the vars into V, and V, on n/2 vars each

For i=1,2 and every partial assignment A of V,,
create an (m+2)-length vector v(j, 4):

m clauses

for all V(1 A) 0ifA satlsfles the clause, 1 otherwise

for all v(2 A)

0OifA satlsfles the clause,
1 otherwise

The 01 and 10 gadgets imply: If there’s an orthogonal pair, it must be a red vector and a blue vector

FASTER OV IMPLIES SETH IS FALSE
o T [o [Tol o Tl
| Y ¥ 3

forall v(1, A) 0 if A satisfies the clause, 1 otherwise
\ _
Y Y 3
for all v(2, A') 0 if A’ satisfies the clause,
1 otherwise

Claim: <v(1, A4),v(2, A")> = 0iff (4, A') is a sat assignment to F.

We have an OV instance with N = 2™/2 vectors of dimension d = 0(m)
Therefore, if OV can be solved in N?~° poly(d) time for some § > 0

5
then CNF-SAT can be solved in 2172 poly(m) time, and SETH is false!

Diameter:

T

Given G = (V,E), determine D = max distance(u, v).

2

N2-8

Sparse graph diameter [RV'13,BRSVW’18],
eccentricities [AVW’16] , local alignment, longest
common substring® [AVW’14], Frechet distance
[Br’14], Edit distance [BI’15], LCS, dynamic time
warping [ABV’15, BrK’15], subtree isomorphism

[ABHVZ’15], Betweenness [AGV’15], Hamming Closest
Pair [AW15], Reg. Expr. Matching [BI16,BGL17]...

N2 ¢ oV

1

u,vev

3 : : , 2D
= — Approximate Diameter: output D’ such that -5 < D' <D.

Let G have m edges and n vertices.
Using BFS, can solve Diameter in O (mn) time
Best known, even in sparse graphs.

~(3
[RV’13] 3/2-Approximate Diameter in O(mz)
time: better than mn for sparse graphs!

We’'ll show 3/2—e Approximate Diameter for
e > 0 requires mn1=°M) time under SETH.

Hard: Distinguishing between sparse graphs
of Diameter 2, and those with Diameter 3

l——

Reduce from OV with n vectors and [RV'13]

dimension d = poly(logn) DlAMETER 2 OR 3

Node for

Node for
each vector Node for each EIGRta /@l Claim: The diameter of this
coordinate . . .
graph is 3 if there is an
orthogonal pair,
Vv U and is 2 otherwise.
For each v,c c
edge (v,c) iff For each/d, u
v[c]=1 g edge (d;u) iff Thm: Determining if a graph
uldl=1 has diameter 2 or 3 in O(m2%)
time implies O(n% ¢) time for
OV, so SETH is false!
X Y

Every pair of vector nodes from the same side have distance 2.

Graph has O (n) nodes.

| Since d = poly(logn),
X and Y have distance 2 from everyone. has m = ('j(n) edges

Every coordinate node is distance 2 from everyone,

Two vector nodes u and v from different sides have

distance 2 if there’s a c with u[c]=v[c]=1, and have distance 3 otherwise!

THAT'S ALL! THANK YOuUl

L ECTURE NOTES FOR A WHOLE COURSE @
hitps://people.csail.mit.edu/virgi/6.1420/

	Fine-Grained Complexity�(a.k.a. “Hardness in P”)��Ryan Williams �(with Virginia Vassilevska Williams’ slides!)
	The Central Question of Algorithms Research
	HARD problems
	A Canonical (NP) Hard Problem
	Another Hard Problem:�Longest Common Subsequence (LCS)
	In Theoretical Computer Science, �polynomial time = efficient/easy.�
	We are stuck on many problems, even O(n2)-time solvable ones!
	We are stuck on many problems, even O(n2)-time solvable ones!
	We are stuck on many problems, even O(n2)-time solvable ones!
	We are stuck on many problems, even O(n2)-time solvable ones!
	“Hard” problems in the real world
	“Easy” problems in the real world
	Outline
	A Source of Hardness: Time Hierarchy Theorems
	Why is K-SAT Hard?
	Outline
	Fine-Grained Hardness
	Fine-Grained Hardness
	CNF SAT is conjectured to be really hard
	Slide Number 21
	Fine-Grained Hardness
	Fine-grained reductions
	structure within P
	Outline
	Strong ETH (SETH)
	FASTER OV implies SETH is false [W’04]
	FASTER OV implies SETH is false [W’04]
	FastER OV implies SETH is false
	Slide Number 30
	 Diameter 2 or 3
	Slide Number 32

