Tine-Grained Complexity (A.K.A. "HARDNESS IN P")

RYAN WILLIAMS (WITH VIRGINIA VASSILEVSKA WILLIAMS' SLIDES!)

The Central Question of Algorithms Research

"How fast can we solve fundamental problems, in the worst case?"

etc.

HARD PROBLEMS

For many problems, the known techniques get stuck:

- Very important computational problems from diverse areas
- They have simple, often brute-force, textbook algorithms... ... that are *too slow*.
- No improvements in many decades!

These points hold not only for NP-hard problems, but *polynomial-time* problems as well!

Example 1

A CANONICAL (NP) HARD PROBLEM

k-SAT

<u>Input</u>: variables $x_1, ..., x_n$ and a formula $F = C_1 \land C_2 \land ... \land C_m$ over $\{x_1, ..., x_n\}$ where each C_i has the form $\{y_1 \lor y_2 \lor ... \lor y_k\}$ and each y_i is either x_t or $\neg x_t$ for some t.

<u>Output:</u> A boolean assignment to {x₁,...,x_n} that makes all clauses true (satisfies clauses), or NO if the formula is not satisfiable (there is no such assignment)

Brute-force algorithm: try all 2ⁿ assignments, plug them in one by one Best known algorithm: O(2^{n-(cn/k)}m^d) time for fixed constant c, d

Goes to 2ⁿ, as k grows

2221 ANOTHER HARD PROBLEM: LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on *n* letters

Example 2

ATCGGGTTCCTTAAGGG

AATTGGTACCUTCAGGGG

Find a subsequence of both strings of maximum length.

Algorithms:

Classical **O(n²)** time

Best known algorithm: O(n² / log² n) time [MP'80]

Applications: computational biology, spellcheckers, ...

Solved daily on *huge* strings! (Human genome: 3 x 10⁹ base pairs.)

IN THEORETICAL COMPUTER SCIENCE, POLYNOMIAL TIME = EFFICIENT/EASY.

- **Composition:** Composing two "efficient" algorithms always results in another "efficient" algorithm
- Model Independence: "Polynomial time" is the same notion over random access machines, pointer machines, Turing machines, etc.

However, nobody believes that an O(n¹⁰⁰) time algorithm would be efficient in practice...

If n is large enough, then $O(n^2)$ is already inefficient!

We do not know any $N^{2-\epsilon}$ time algorithm (for any $\epsilon > 0$) for:

Many string matching problems: Edit distance, Sequence local alignment, LCS, jumbled indexing ...

General form: given two sequences of length n, how similar are they? All variants can be solved in $O(n^2)$ time by dynamic programming.

> ATCGGGTTCCTTAAGGG ATTGGTACCTTCAGG

We do not know any N^{2- ε} time algorithm (for *any* $\varepsilon > 0$) for:

- Many string matching problems
- Many problems in *computational geometry*: for example,
- Given n points in the plane, are any three co-linear?
- A very important primitive!

We do not know any N^{2- ε} time algorithm (for *any* $\varepsilon > 0$) for:

- Many string matching problems
- Many problems in *computational geometry*
- Many graph problems in sparse graphs, for example:

Given an *n*-node, O(n)-edge graph, what is its diameter? Fundamental problem. Even approximation algorithms seem hard!

We do not know any N^{2- ε} time algorithm (for *any* $\varepsilon > 0$) for:

- Many string matching problems
- Many problems in *computational geometry*
- Many graph problems in sparse graphs
- Many other problems ...

Why are we stuck?

Are we stuck because of *the same reason*?

"HARD" PROBLEMS IN THE REAL WORLD

I've got data. I want to solve this algorithmic problem but I'm stuck!

Uhm... Ok, thanks, I feel better that nothing worked... I'll use some heuristics. I'm sorry, your problem is **NP-hard**. A fast algorithm would resolve a big problem in CS/math and tilt the very axis of our universe.

"EASY" PROBLEMS IN THE REAL WORLD

I've got data. I want to solve this algorithmic problem but I'm stuck!

Great news! Your problem is in **P**. Here's an **O(n²)** time algorithm!

Yo, my **n** is huge! Don't you have a faster algorithm?

?!? ... Should I wait? ... should I be satisfied with heuristics? Uhm, I don't know... Isn't this fast enough? I don't know a faster algorithm at the moment...

OUTLINE

• Traditional hardness in computational complexity theory

• A "fine-grained" approach to complexity theory

• Some simple results

A Source of Hardness: Time Hierarchy Theorems

For most natural computational models, one can prove:

for any constant $c \ge 1$, and every $\varepsilon > 0$, there *exist* problems that are solvable in $O(n^c)$ time but not in $O(n^{c-\varepsilon})$ time.

It remains entirely unclear how to show that a *particular desired* problem in **O**(**n**^c) time is not in **O**($n^{c-\varepsilon}$) time.

It is not even known if k-SAT is in **linear time**!

WHY IS K-SAT HARD?

Theorem [Cook, Levin, Karp]: k-SAT is NP-complete for all $k \ge 3$. NP-completeness addresses runtime, but it is too coarse-grained!

NP-completeness also does not apply to problems in P!

Tool: poly-time reductions

NP

Ρ

That is, k-SAT is believed to be hard because

poly-time algorithms for k-SAT imply poly-time algorithms for many other difficult problems.

A *fine-grained theory of hardness* has been developed, which is conditional and mimics NP-completeness.

OUTLINE

Traditional hardness in computational complexity theory

• A "fine-grained" approach to complexity theory

• Some simple results

FINE-GRAINED HARDNESS

0. Mimic NP-completeness?

Goal: Understand the landscape of problems in *P* that people want to solve

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

3. Try to form *equivalence classes of problems: one of them can be solved faster ⇔ all of them can be solved faster*

FINE-GRAINED HARDNESS

0. Mimic NP-completeness?

Goal: Understand the landscape of problems in *P* that people want to solve

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

3. Try to form *equivalence classes of problems: one of them can be solved faster ⇔ all of them can be solved faster*

CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on *n* variables [IPZ'99,CIP'09] ETH (Exponential Time Hypothesis):

3-SAT cannot be solved in $2^{\delta n}$ time for some constant $\delta > 0$.

3-SAT can't be solved in 1.0000…01ⁿ time (for some number of 0's)

SETH (Strong Exponential Time Hypothesis): For every $\varepsilon > 0$, there is a k such that k-SAT on n variables and m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly(m) time.

CNF-SAT can't be solved in 1.9999...9ⁿ time (for every number of 9's)

One Idea: Use k-SAT as our hard problem, and ETH or SETH as the hypothesis that we base hardness on.

Strengthening of SETH [CGIMPS'16] suggests these three are **not equivalent...**

FINE-GRAINED HARDNESS

0. Mimic NP-completeness?

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

 3. Hopefully form equivalence classes of problems: one of them can be solved faster
 ⇐ all of them can be solved faster

FINE-GRAINED REDUCTIONS

- Intuition: a(n),b(n) are known runtimes for problems A and B. "A reducible to B" implies that beating b(n)-time for B implies also beating a(n)-time for A.
- Problem A is (a(n),b(n))-reducible to Problem B if also beating a(n)-time for all sufficiently small $\varepsilon > 0$, there's a $\delta > 0$ and an $O(a(n)^{1-\delta})$ time algorithm that can solve all A-instances of size n by making adaptive calls

solving **B-instances of size** $n_1,...,n_k$ satisfying $\sum_i b(n_i)^{1-\epsilon} < a(n)^{1-\delta}$.

<u>Key Property:</u> If B is in $O(b(n)^{1-\varepsilon})$ time for some ε , then A is in $O(a(n)^{1-\delta})$ time for some δ .

- Focus on running time exponents.
- We can build more equivalences with this.

Most reductions don't need this level of generality... but some do!

With more hardness assumptions, one finds even more structure

N = input size n = number of variables, or number of vertices

Huge literature in comp. geometry [GO'95, BHP98, ...]: Geombase, 3PointsLine, 3LinesPoint, Polygonal Containment, Planar Motion Planning, 3D Motion Planning ...

N^{2-ε'}

<u>String problems:</u> Sequence local alignment [AVW'14], jumbled indexing [ACLL'14], ...

STRUCTURE WITHIN P

N^{2-ε'}

Sparse graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [Bl'15], LCS, dynamic time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], RegExp Matching [Bl16,BGL17]...

Many dynamic problems [P'10],[AV'14], [HKNS'15], [D16], [RZ'04], [AD'16],...

> Ν^{1.5-ε'} n^{3-ε}

In <u>dense graphs</u>: radius, median, betweenness centrality [AGV'15], *negative triangle*, second shortest path, replacement paths, shortest cycle [VW'10],

OUTLINE

• Traditional hardness in computational complexity theory

• A "fine-grained" approach to complexity theory

• Some simple results: Show that SETH implies fine-grained hardness in P

STRONG ETH (SETH)

SETH: for every $\varepsilon > 0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly(m) time.

If there is an $\varepsilon > 0$ and an algorithm that can solve SAT on *general* CNF Formulas (k-SAT for all k) on n variables and m clauses in $2^{(1-\varepsilon)n}$ poly(m) time algorithm, then SETH is false.

FASTER OV IMPLIES SETH IS FALSE [W'04]

Let *F* be a CNF formula with n vars, m clauses Ex: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$

Split the vars into V₁ and V₂ on n/2 vars each Ex: V₁ = { x_1, x_2 }, V₂ = { x_3, x_4 } OV: Given a set S of N vectors
in {0, 1}^d, are there u, v ∈ S
with <u, v> = 0?

Given *F*, we want to create a set of vectors S in $\{0,1\}^d$ so that there is an orthogonal pair in S if and only if F is satisfiable, with $|S| \approx 2^{n/2}$ and $d \approx m$.

Consider all partial assignments of V₁ and V₂: there are $2^{n/2}$ of them. Ex: for V₁: { [$x_1 = 0, x_2 = 0$], [$x_1 = 0, x_2 = 1$], [$x_1 = 1, x_2 = 0$], [$x_1 = 1, x_2 = 1$]}

The 01 and 10 gadgets imply: If there's an orthogonal pair, it must be a red vector and a blue vector

FASTER OV IMPLIES SETH IS FALSE

Claim: $\langle v(1, A), v(2, A') \rangle = 0$ iff (A, A') is a sat assignment to F.

We have an OV instance with N = $2^{n/2}$ vectors of dimension d = O(m)Therefore, if OV can be solved in $N^{2-\delta}$ poly(d) time for some $\delta > 0$ then CNF-SAT can be solved in $2^{n(1-\frac{\delta}{2})}$ poly(m) time, and SETH is false!

Diameter:

Given G = (V, E), determine $D = \max_{u,v \in V} distance(u, v)$. $\frac{3}{2}$ – Approximate Diameter: output D' such that $\frac{2D}{3} \leq D' \leq D$.

N^{2- ε′}

Sparse graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [Bl'15], LCS, dynamic time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [Bl16,BGL17]...

Let G have m edges and n vertices. Using BFS, can solve Diameter in O(mn) time Best known, even in sparse graphs.

[RV'13] 3/2-Approximate Diameter in $\tilde{O}(m^{\frac{3}{2}})$ time: better than *mn* for sparse graphs!

We'll show $3/2 - \epsilon$ Approximate Diameter for $\epsilon > 0$ requires $mn^{1-o(1)}$ time under SETH.

Hard: Distinguishing between sparse graphs of Diameter 2, and those with Diameter 3

Reduce from OV with n vectors and dimension d = $poly(\log n)$

DIAMETER 2 OR 3

[RV'13]

Claim: The diameter of this graph is 3 if there is an orthogonal pair, and is 2 otherwise.

Thm: Determining if a graph has diameter 2 or 3 in $O(m^{2-\epsilon})$ time implies $O(n^{2-\epsilon})$ time for OV, so SETH is false!

Every pair of vector nodes from the same side have distance 2.

Every coordinate node is distance 2 from everyone, X and Y have distance 2 from everyone.

Two vector nodes u and v from different sides have

distance 2 if there's a c with **u[c]=v[c]=1**, and have **distance 3** otherwise!

Graph has O(n) nodes. Since $d = poly(\log n)$, has $m = \tilde{O}(n)$ edges

THAT'S ALL! THANK YOU!

LECTURE NOTES FOR A WHOLE COURSE @ https://people.csail.mit.edu/virgi/6.1420/