Tine-G nained Compleatly (A.K.A. "HardNess in P")

RYAN WILLIAMS

(with Virginia Vassilevska Williams' slides!)

The Central Question of Algorithms Research

"How fast can we solve fundamental problems, in the worst case?"

etc.

HARD PROBLEMS

For many problems, the known techniques get stuck:

- Very important computational problems from diverse areas
- They have simple, often brute-force, textbook algorithms...
... that are too slow.
- No improvements in many decades!

These points hold not only for NP-hard problems, but polynomial-time problems as well!

A Canonical (NP) Hard Problem

k-SAT

Input: variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and a formula $\mathrm{F}=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots \wedge \mathrm{C}_{\mathrm{m}}$ over $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ where each C_{i} has the form $\left\{y_{1} \vee y_{2} \vee \ldots \vee y_{k}\right\}$ and each y_{i} is either x_{t} or $\neg x_{t}$ for some t.

Output: A boolean assignment to $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\}$ that makes all clauses true (satisfies clauses), or NO if the formula is not satisfiable (there is no such assignment)

Brute-force algorithm: try all 2^{n} assignments, plug them in one by one Best known algorithm: $O\left(2^{n-(c n / k)} m^{d}\right)$ time for fixed constant c, d

Goes to 2^{n}, as k grows

LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

ATCGGGTTCCTTAAGGG:
AATTGGTACCITCAGGGG

Find a subsequence of both strings of maximum length.

Applications: computational biology, spellcheckers, ...

Solved daily on huge strings!
(Human genome: 3×10^{9} base pairs.)

Algorithms:

Classical O(n^{2}) time

Best known algorithm:
O($n^{2} / \log ^{2} n$) time [MP'80]

In Theoretical Computer Science, POLYNOMIAL TIME = EFFICIENT/EASY.

- Composition: Composing two "efficient" algorithms always results in another "efficient" algorithm
- Model Independence: "Polynomial time" is the same notion over random access machines, pointer machines, Turing machines, etc.

However, nobody believes that an $\mathrm{O}\left(\mathrm{n}^{100}\right)$ time algorithm would be efficient in practice...

If n is large enough, then $O\left(n^{2}\right)$ is already inefficient!

We are stuck on many problems, even O(${ }^{2}$)-TIME SOLVAble ONES!

We do not know any $\mathbf{N}^{2-\varepsilon}$ time algorithm (for any $\varepsilon>0$) for:

- Many string matching problems:

Edit distance, Sequence local alignment, LCS, jumbled indexing ...
General form: given two sequences of length n, how similar are they? All variants can be solved in $O\left(n^{2}\right)$ time by dynamic programming.

ATCGGGTTCCTTAAGGG ATTGGTACCTTCAGG

WE ARE STUCK ON MANY PROBLEMS, EVEN O(N2)-TIME SOLVABLE ONES!

We do not know any $\mathbf{N}^{2-\varepsilon}$ time algorithm (for any $\varepsilon>0$) for:

- Many string matching problems
- Many problems in computational geometry: for example, Given n points in the plane, are any three co-linear?
A very important primitive!

We Are stuck on many problems, EVEN O(${ }^{2}$)-TIME SOLVABLE ONES!

We do not know any $\mathbf{N}^{\mathbf{2}-\varepsilon}$ time algorithm (for any $\varepsilon>0$) for:

- Many string matching problems
- Many problems in computational geometry
- Many graph problems in sparse graphs, for example:

Given an n-node, $O(n)$-edge graph, what is its diameter?
Fundamental problem. Even approximation algorithms seem hard!

We Are stuck on many problems, EVEN O(N^{2})-TIME SOLVABLE ONES!

We do not know any $\mathbf{N}^{2-\varepsilon}$ time algorithm (for any $\varepsilon>0$) for:

- Many string matching problems
- Many problems in computational geometry
- Many graph problems in sparse graphs
- Many other problems ...

Why are we stuck?

Are we stuck because of the same reason?

"HARD" PROBLEMS IN THE REAL WORLD

"EASY" PROBLEMS IN THE REAL WORLD

OUTLINE

- Traditional hardness in computational complexity theory
- A "fine-grained" approach to complexity theory
- Some simple results

A SOURCE Of Hardness: Time Hierarchy THEOREMS

For most natural computational models, one can prove:
for any constant $c \geq 1$, and every $\varepsilon>0$, there exist problems that are solvable in $\boldsymbol{O}\left(\boldsymbol{n}^{c}\right)$ time but not in $\boldsymbol{O}\left(\boldsymbol{n}^{c-\varepsilon}\right)$ time.

It remains entirely unclear how to show that a particular desired problem in $\mathbf{O}\left(\mathbf{n}^{c}\right)$ time is not in $\boldsymbol{O}\left(\boldsymbol{n}^{c-\varepsilon}\right)$ time.

It is not even known if k-SAT is in linear time!

Why is K-SAT HARD?

Theorem [Cook, Levin, Karp]:
$k-S A T$ is $N P$-complete for all $k \geq 3$.

NP-completeness addresses runtime, but it is too coarse-grained!

NP-completeness also does not apply to problems in P!
That is, k -SAT is believed to be hard because poly-time algorithms for k-SAT imply poly-time algorithms for many other difficult problems.

A fine-grained theory of hardness has been developed, which is conditional and mimics NP-completeness.

OUtLINE

- Traditional hardness in computational complexity theory
- A "fine-grained" approach to complexity theory
- Some simple results

Fine-Grained Hardness

0. Mimic NP-completeness?

Goal: Understand the landscape of problems in P that people want to solve

1. Identify key hard problems
2. Reduce these to all (?) problems believed hard
3. Try to form equivalence classes of problems: one of them can be solved faster \Leftrightarrow all of them can be solved faster

Fine-Grained Hardness

0. Mimic NP-completeness?

Goal: Understand the landscape of problems in P that people want to solve

1. Identify key hard problems
2. Reduce these to all (?) problems believed hard
3. Try to form equivalence classes of problems: one of them can be solved faster \Leftrightarrow all of them can be solved faster

CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on n variables [IPZ'99,CIP'09]
ETH (Exponential Time Hypothesis):
3-SAT cannot be solved in $2^{\delta \mathrm{n}}$ time for some constant $\delta>0$.
3-SAT can't be solved in 1.0000‥01 ${ }^{\text {n }}$ time (for some number of 0 's)
SETH (Strong Exponential Time Hypothesis):
For every $\varepsilon>0$, there is a k such that k-SAT on n variables and m clauses cannot be solved in $2^{(1-\varepsilon) n}$ poly(m) time.
CNF-SAT can't be solved in 1.9999...9n time (for every number of 9's)
One Idea: Use k-SAT as our hard problem, and ETH or SETH as the hypothesis that we base hardness on.

Strengthening of SETH [CGIMPS'16] suggests these three are not equivalent...

Fix the model:

word-RAM with O(log n) bit words

Given a set S of n vectors in $\{0,1\}^{d}$, for $d=\omega(\log n)$, are there $u, v \in S$ with $<u, v>=0$?

Hypothesis: OV

 requires $\mathrm{n}^{2-(1)}$ time.Trivial $O\left(n^{2} d\right)$ time algorithm Best known [AWY'15]: $n^{2}-\Theta(1 / \log (d / \log n))$
[W’05]: SETH implies this hypothesis!

Orthogonal vectors (OV)

Not-too-hard O(n^{2}) time algorithm [BDP'05]: $\approx n^{2} / \log ^{2} n$ time for integers [Chan'18] : $\approx n^{2} / \log ^{2} n$ time for reals

Hypothesis: APSP

 requires $\mathrm{n}^{3-0(1)}$ time.All pairs shortest paths: given an n-node weighted graph, find the distance between every two nodes.

Hypothesis: 3SUM requires $\mathrm{n}^{2-0(1)}$ time.
are there $a, b, c \in S$ with $a+b+c=0 ?$
Given a set S of n integers,

Fine-Grained Hardness

0. Mimic NP-completeness?
1. Identify key hard problems
2. Reduce these to all (?) problems believed hard
3. Hopefully form equivalence classes of problems: one of them can be solved faster \Leftrightarrow all of them can be solved faster

FINE-GRAINED REDUCTIONS

- Problem A is (a(n),b(n))-reducible to Problem B if

Intuifion: $\mathrm{a}(\mathrm{n}), \mathrm{b}(\mathrm{n})$ are known runtimes for problems A and B . "A reducible to B" implies that beating b(n)-time for B implies also beating a(n)-time for A. for all sufficiently small $\varepsilon>0$, there's a $\delta>0$ and an $\mathbf{O}\left(a(n)^{1-\delta}\right)$ time algorithm that can solve all A-instances of size \boldsymbol{n} by making adaptive calls solving B-instances of size n_{1}, \ldots, n_{k} satisfying $\Sigma_{i} b\left(n_{i}\right)^{1-\varepsilon}<a(n)^{1-\delta}$.

Key Property: If B is in $\mathrm{O}\left(\mathrm{b}(\mathrm{n})^{1-\varepsilon}\right)$ time for some ε, then A is in $\mathrm{O}\left(\mathrm{a}(\mathrm{n})^{1-\delta}\right)$ time for some δ.

- Focus on running time exponents.
- We can build more equivalences with this.

With more hardness assumptions, one finds even more structure
$\mathrm{N}=$ input size $\mathrm{n}=$ number of variables, or number of vertices warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], RegExp Matchins [BI16,BGL17]...

Huge literature in comp. geometry [GO'95, BHP98, ...]: Geombase, 3PointsLine, 3LinesPoint, Polygonal Containment, Planar Motion Planning, 3D Motion Planning ...

String problems: Sequence local alignment [AVW'14], jumbled indexing [ACLL'14], ...

Sparse graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16] , local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [BI’15], LCS, dynamic time

STRUCTURE WITHIN P

Many dynamic problems [P'10],[AV'14], [HKNS'15], [D16], [RZ'04], [AD' 16$]$...

In dense graphs: radius, median, betweenness centrality [AGV'15], negative triangle, second shortest path, replacement paths, shortest cycle [VW'10],

OUtLINE

- Traditional hardness in computational complexity theory
- A "fine-grained" approach to complexity theory
- Some simple results:

Show that SETH implies fine-grained hardness in P

StRONG ETH (SETH)

SETH: for every $\varepsilon>0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon) n}$ poly (m) time.

If there is an $\varepsilon>0$ and an algorithm that can solve SAT on general CNF Formulas (k-SAT for all k) on n variables and m clauses in $2^{(1-\mathrm{g}) \mathrm{n}}$ poly(m) time algorithm, then SETH is false.

FASTER OV IMPLIES SETH IS FALSE [W'04]

Let F be a CNF formula with n vars, m clauses
Ex: $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{4}\right)$

Split the vars into V_{1} and V_{2} on $n / 2$ vars each $E x: V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{x_{3}, x_{4}\right\}$

OV: Given a set S of N vectors in $\{0,1\}^{d}$, are there $u, v \in S$ with $\langle\mathrm{u}, \mathrm{v}\rangle=0$?

Given F, we want to create a set of vectors S in $\{0,1\}^{d}$ so that there is an orthogonal pair in S if and only if F is satisfiable, with $|S| \approx 2^{n / 2}$ and $d \approx m$.

Consider all partial assignments of V_{1} and V_{2} : there are $2^{\boldsymbol{n} / \mathbf{2}}$ of them.
Ex: for V_{1} : $\left\{\left[x_{1}=0, x_{2}=0\right],\left[x_{1}=0, x_{2}=1\right],\left[x_{1}=1, x_{2}=0\right],\left[x_{1}=1, x_{2}=1\right]\right\}$

FASTER OV IMPLIES SETH IS FALSE [W'04]

Let F be a CNF formula with n vars, m clauses
Split the vars into V_{1} and V_{2} on $n / 2$ vars each
For $\mathrm{i}=1,2$ and every partial assignment A of V_{i}, create an ($\mathrm{m}+2$)-length vector $\mathrm{v}(\mathrm{j}, A)$:

```
Ex: (x 和\vee 和)^(\neg\mp@subsup{x}{1}{}\vee\mp@subsup{x}{3}{}\vee\mp@subsup{x}{4}{})\wedge(\neg\mp@subsup{x}{3}{}\vee\neg\mp@subsup{x}{4}{})
```


The 01 and 10 gadgets imply: If there's an orthogonal pair, it must be a red vector and a blue vector

FASTER OV IMPLIES SETH IS FALSE

0	1	0	1	0	\ldots	\ldots	\ldots	\ldots	1

for all $\mathrm{v}(\mathbf{1}, A) \quad \mathbf{0}$ if \boldsymbol{A} satisfies the clause, $\mathbf{1}$ otherwise

1	0	0	0	1	\ldots	\ldots	\ldots	\ldots	1

for all $v\left(\mathbf{2}, A^{\prime}\right)$
0 if A^{\prime} satisfies the clause,
1 otherwise
Claim: $<\mathrm{v}(1, A), \mathrm{v}\left(2, A^{\prime}\right)>=0$ iff $\left(A, A^{\prime}\right)$ is a sat assignment to F .
We have an OV instance with $\mathrm{N}=2^{n / 2}$ vectors of dimension $d=O(\mathrm{~m})$ Therefore, if OV can be solved in $N^{2-\delta}$ poly (d) time for some $\delta>0$ then CNF-SAT can be solved in $2^{n\left(1-\frac{\delta}{2}\right)}$ poly (m) time, and SETH is false!

Diameter:

Given $G=(V, E)$, determine $D=\max _{u, v \in V} \operatorname{distance}(u, v)$.
$\frac{\mathbf{3}}{\mathbf{2}}$ - Approximate Diameter: output D^{\prime} such that $\frac{2 D}{3} \leq D^{\prime} \leq D$.
$N^{2-\varepsilon}$
Sparse graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16] , local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [Bl'15], LCS, dynamic time warping [ABV'15, BrK'15], subtree isomorphism
[ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [BI16,BGL17]...

Let G have m edges and n vertices.
Using BFS, can solve Diameter in $0(\mathrm{mn})$ time Best known, even in sparse graphs.
[RV'13] 3/2-Approximate Diameter in $\tilde{O}\left(m^{\frac{3}{2}}\right)$ time: better than mn for sparse graphs!

We'll show 3/2- ϵ Approximate Diameter for $\epsilon>0$ requires $m n^{1-o(1)}$ time under SETH.

Hard: Distinguishing between sparse graphs of Diameter 2, and those with Diameter 3

Reduce from OV with n vectors and [RV'13]

DIAMETER 2 OR 3

Every pair of vector nodes from the same side have distance 2.
Every coordinate node is distance 2 from everyone, X and Y have distance 2 from everyone.
Two vector nodes u and v from different sides have

Graph has $O(n)$ nodes. Since $d=\operatorname{poly}(\log n)$, has $m=\tilde{0}(n)$ edges

THAt'S AlL! THANK YOU!

LECTURE NOTES FOR A WHOLE COURSE @

 https://people.csail.mit.edu/virgi/6.1420/