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THE CENTRAL QUESTION OF ALGORITHMS RESEARCH

“How fast can we solve fundamental 
problems, in the worst case?”

etc.



HARD PROBLEMS

For many problems, the known techniques get stuck:

• Very important computational problems from diverse areas
• They have simple, often brute-force, textbook algorithms…
… that are too slow.
• No improvements in many decades!
These points hold not only for NP-hard problems,
but polynomial-time problems as well!



A CANONICAL (NP) HARD PROBLEM

k-SAT
Input: variables x1, … , xn and a formula F = C1 ∧ C2 ∧ … ∧ Cm over {x1,…,xn}

where each Ci has the form {y1 ∨ y2 ∨ … ∨ yk} and each yi is either xt or ¬xt for some t.

Output: A boolean assignment to {x1,…,xn} that makes all clauses true (satisfies clauses), 
or NO if the formula is not satisfiable (there is no such assignment)

Brute-force algorithm: try all 2n assignments, plug them in one by one
Best known algorithm: O(2n-(cn/k)md) time for fixed constant c, d

Goes to 2n, 
as k grows



ANOTHER HARD PROBLEM:
LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on 𝑛𝑛 letters

Find a subsequence of both strings of maximum length.

Applications: computational biology, spellcheckers, …

Solved daily on huge strings!

(Human genome: 3 x 109 base pairs.)

ATCGGGTTCCTTAAGGG
AT T GG_TACCTTCA_GG
ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

Algorithms:

Classical O(n2) time

Best known algorithm:
O(n2 / log2 n) time [MP’80]

???!



IN THEORETICAL COMPUTER SCIENCE, 
POLYNOMIAL TIME = EFFICIENT/EASY.

• Composition: Composing two “efficient” algorithms always results in another 
“efficient” algorithm

• Model Independence: “Polynomial time” is the same notion over random 
access machines, pointer machines, Turing machines, etc.

However, nobody believes that an O(n100) time algorithm
would be efficient in practice…

If 𝑛𝑛 is large enough, then 𝑂𝑂(𝑛𝑛2) is already inefficient!



WE ARE STUCK ON MANY PROBLEMS, 
EVEN O(N2)-TIME SOLVABLE ONES!

We do not know any N2 - ε time algorithm (for any 𝜀𝜀 > 0) for:

Many string matching problems: 
Edit distance, Sequence local alignment, LCS, jumbled indexing …

General form: given two sequences of length n, how similar are they?
All variants can be solved in O(n2) time by dynamic programming.

ATCGGGTTCCTTAAGGG
ATTGGTACCTTCAGG



WE ARE STUCK ON MANY PROBLEMS, 
EVEN O(N2)-TIME SOLVABLE ONES!

We do not know any N2 - ε time algorithm (for any 𝜀𝜀 > 0) for:

 Many string matching problems
 Many problems in computational geometry: for example,
Given n points in the plane, are any three co-linear?
A very important primitive!



WE ARE STUCK ON MANY PROBLEMS, 
EVEN O(N2)-TIME SOLVABLE ONES!

We do not know any N2 - ε time algorithm (for any 𝜀𝜀 > 0) for:

 Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs, for example: 

Given an 𝑛𝑛-node, 𝑂𝑂(𝑛𝑛)-edge graph, what is its diameter? 
Fundamental problem. Even approximation algorithms seem hard!



WE ARE STUCK ON MANY PROBLEMS, 
EVEN O(N2)-TIME SOLVABLE ONES!

We do not know any N2 - ε time algorithm (for any 𝜀𝜀 > 0) for:

 Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs
 Many other problems …

Why are we stuck?
Are we stuck because of the same reason?



“HARD” PROBLEMS IN THE REAL WORLD

I’ve got data. I want to 
solve this algorithmic 

problem but I’m stuck!

I’m sorry, your problem 
is NP-hard. A fast 

algorithm would resolve 
a big problem in 

CS/math and tilt the very 
axis of our universe. 

Uhm… Ok, thanks, 
I feel better that 

nothing worked… I’ll 
use some heuristics.



“EASY” PROBLEMS IN THE REAL WORLD

Great news! Your 
problem is in P. 

Here’s an O(n2) time 
algorithm!

Yo, my n is huge! 
Don’t you have a 
faster algorithm? Uhm, I don’t know… 

Isn’t this fast enough?
I don’t know a faster 

algorithm at the 
moment…

?!? … Should I wait? 
… should I be 
satisfied with 

heuristics? 

I’ve got data. I want to 
solve this algorithmic 

problem but I’m stuck!



OUTLINE

• Traditional hardness in computational complexity theory

• A “fine-grained” approach to complexity theory

• Some simple results



A SOURCE OF HARDNESS: TIME HIERARCHY
THEOREMS

For most natural computational models, one can prove:

for any constant 𝒄𝒄 ≥ 𝟏𝟏, and every 𝜺𝜺 > 𝟎𝟎, there exist problems 
that are solvable in 𝑶𝑶(𝒏𝒏𝒄𝒄) time but not in 𝑶𝑶(𝒏𝒏𝒄𝒄−𝜺𝜺) time.

It remains entirely unclear how to show that a particular desired
problem in O(nc) time is not in 𝑶𝑶(𝒏𝒏𝒄𝒄−𝜺𝜺) time. 

It is not even known if k-SAT is in linear time!



WHY IS K-SAT HARD?

Theorem [Cook, Levin, Karp]: 
k-SAT is NP-complete for all k ≥ 3.

That is, k-SAT is believed to be hard because
poly-time algorithms for k-SAT imply poly-time 

algorithms for many other difficult problems.

A fine-grained theory of hardness has been developed, 
which is conditional and mimics NP-completeness.

NP-completeness addresses runtime, 
but it is too coarse-grained!

NP-completeness also does not apply 
to problems in P! Unless 

P=NP

NP
P

Tool: poly-time 
reductions



OUTLINE

• Traditional hardness in computational complexity theory

• A “fine-grained” approach to complexity theory

• Some simple results



FINE-GRAINED HARDNESS

1. Identify key hard problems 

2. Reduce these to all (?) problems believed hard

3. Try to form equivalence classes of problems: 
one of them can be solved faster
 all of them can be solved faster

0. Mimic NP-completeness? Goal: Understand the landscape of 
problems in 𝑷𝑷 that people want to solve
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CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on 𝑛𝑛 variables [IPZ’99,CIP’09]
ETH (Exponential Time Hypothesis): 

3-SAT cannot be solved in 2δn time for some constant δ > 0.

SETH (Strong Exponential Time Hypothesis): 
For every ε > 0, there is a k such that k-SAT on 𝑛𝑛 variables and

𝑚𝑚 clauses cannot be solved in 2(1-ε)n poly(m) time.

One Idea: Use k-SAT as our hard problem, 
and ETH or SETH as the hypothesis that we base hardness on.

3-SAT can’t be solved in 1.0000⋯01n time (for some number of 0’s)

CNF-SAT can’t be solved in 1.9999⋯9n time (for every number of 9’s)



Orthogonal  
vectors (OV)

3SUM APSP

Given a set S of n integers, 
are there a, b, c ∈ S with 

a + b + c = 0?

All pairs shortest paths: 
given an n-node weighted 
graph, find the distance 

between every two nodes.

Given a set S of n vectors      
in {0,1}d, for d = ω(log n), are 
there u, v ∈ S with <u,v> = 0?

Not-too-hard O(n2) time algorithm
[BDP’05]: ≈n2 / log2 n time for integers
[Chan’18] : ≈ n2 / log2 n time for reals

Trivial O(n2 d) time algorithm
Best known [AWY’15]: n2 - Θ(1 /  log (d/log n))

Classical algs: O(n3) time
[W’14]: n3 / exp(√ log n) time

Three more key 
problems to blame

Strengthening of SETH [CGIMPS’16] suggests these three are not equivalent…

Hypothesis: OV 
requires n2-o(1) time.

Hypothesis: 3SUM 
requires n2-o(1) time.

Hypothesis: APSP 
requires n3-o(1) time.

[W’05]: SETH implies 
this hypothesis!

Fix the model: 
word-RAM with 

O(log n) bit words



FINE-GRAINED HARDNESS

1. Identify key hard problems 

2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes of problems: 
one of them can be solved faster
 all of them can be solved faster

0. Mimic NP-completeness?



• Problem A is (a(n),b(n))-reducible to Problem B if 
for all sufficiently small ε > 0, there’s a δ > 0 and an O(a(n)1-δ) time algorithm 
that can solve all A-instances of size n by making adaptive calls 
solving B-instances of size n1,…,nk satisfying Σi b(ni)1-ε < a(n)1-δ.

FINE-GRAINED REDUCTIONS

Key Property: If B is in O(b(n)1-ε) time for some 𝜺𝜺, 
then A is in O(a(n)1-δ) time for some 𝛿𝛿.
 Focus on running time exponents.
 We can build more equivalences with this.

A

𝑎𝑎 𝑛𝑛 1−𝛿𝛿

B B B B

Intuition: a(n),b(n) are known 
runtimes for problems A and B. 
“A reducible to B” implies that 
beating b(n)-time for B implies 
also beating a(n)-time for A.

𝑛𝑛1, 𝑛𝑛2, …, 𝑛𝑛𝑘𝑘

𝑛𝑛

Most reductions don’t need this level of generality… but some do!



STRUCTURE WITHIN P

O.V.

3SUM APSP

Sparse graph diameter [RV’13,BRSVW’18], 
eccentricities [AVW’16] , local alignment, longest 
common substring* [AVW’14], Frechet distance 
[Br’14], Edit distance [BI’15], LCS, dynamic time 
warping [ABV’15, BrK’15], subtree isomorphism 

[ABHVZ’15], Betweenness [AGV’15], Hamming Closest 
Pair [AW15], RegExp Matching [BI16,BGL17]…

N2- ε

In dense graphs: radius, 
median, betweenness 

centrality [AGV’15], 
negative triangle, 

second shortest path, 
replacement paths, 

shortest cycle [VW’10], 
…

N1.5-ε
n3- ε

N1.5- ε’

n3- ε

Huge literature in comp. geometry
[GO’95, BHP98, …]: Geombase, 

3PointsLine, 3LinesPoint, Polygonal 
Containment, Planar Motion 

Planning, 3D Motion Planning …

String problems: Sequence local 
alignment [AVW’14], 

jumbled indexing [ACLL’14], …

N2- ε

N2- ε’

equivalent

Many dynamic 
problems

[P’10],[AV’14], 
[HKNS‘15], [D16], 

[RZ’04], [AD’16],…
N2- ε’

k-SAT
2(1 - δ)n

With more hardness 
assumptions, one 
finds even more 

structure

N = input size
n = number of 
variables, or 
number of 
vertices

[W’05]



OUTLINE

• Traditional hardness in computational complexity theory

• A “fine-grained” approach to complexity theory

• Some simple results: 
Show that SETH implies fine-grained hardness in 𝑃𝑃



STRONG ETH (SETH)

SETH: for every ε > 0, there is a k such that k-SAT on n variables, m 
clauses cannot be solved in 2(1-ε)n poly(m) time.

If there is an ε > 0 and an algorithm that can solve SAT on general
CNF Formulas (k-SAT for all k) on n variables and m clauses in
2(1-ε)n poly(m) time algorithm, then SETH is false.



FASTER OV IMPLIES SETH IS FALSE [W’04]
Let 𝐹𝐹 be a CNF formula with n vars, m clauses
Ex: 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥2 ∨ ¬ 𝑥𝑥4

Split the vars into V1 and V2 on 𝑛𝑛/2 vars each
Ex: V1 = {𝑥𝑥1, 𝑥𝑥2}, V2 = {𝑥𝑥3, 𝑥𝑥4}

Consider all partial assignments of V1 and V2 : there are 𝟐𝟐𝒏𝒏/𝟐𝟐 of them.

Ex: for V1: { [𝑥𝑥1 = 0, 𝑥𝑥2 = 0], [𝑥𝑥1 = 0, 𝑥𝑥2 = 1], [𝑥𝑥1 = 1, 𝑥𝑥2 = 0], [𝑥𝑥1 = 1, 𝑥𝑥2 = 1]}

OV: Given a set S of N vectors      
in {0, 1}d, are there u, v ∈ S 

with <u, v> = 0?

Given 𝐹𝐹, we want to create a 
set of vectors S in {0,1}d so that 
there is an orthogonal pair in S 

if and only if F is satisfiable, 
with |S|≈2𝑛𝑛/2 and 𝑑𝑑 ≈ 𝑚𝑚.



Let F be a CNF formula with n vars, m clauses
Split the vars into V1 and V2 on n/2 vars each

For i=1,2 and every partial assignment 𝐴𝐴 of Vi, 
create an (m+2)-length vector v(j, 𝐴𝐴):

0 1 0 1 0 … … … … 1

0 if 𝑨𝑨 satisfies the clause, 1 otherwisefor all v(1, 𝐴𝐴)

1 0 0 0 1 … … … … 1

for all v(2, 𝐴𝐴) 0 if 𝑨𝑨 satisfies the clause, 
1 otherwise

m clauses

Ex: 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥3 ∨ ¬ 𝑥𝑥4
V1 = { 𝑥𝑥1, 𝑥𝑥2}, V2 = { 𝑥𝑥3, 𝑥𝑥4}

v(1,[𝑥𝑥1 = 0, 𝑥𝑥2 = 0]) =   

[0, 1, 1, 0, 1]

FASTER OV IMPLIES SETH IS FALSE [W’04]

The 01 and 10 gadgets imply: If there’s an orthogonal pair, it must be a red vector and a blue vector



FASTER OV IMPLIES SETH IS FALSE

0 1 0 1 0 … … … … 1

0 if 𝑨𝑨 satisfies the clause, 1 otherwisefor all v(1, 𝐴𝐴)

1 0 0 0 1 … … … … 1

for all v(2, 𝐴𝐴𝐴) 0 if 𝐴𝐴𝐴 satisfies the clause, 
1 otherwise

Claim: <v(1, 𝐴𝐴), v(2, 𝐴𝐴𝐴)>  =  0 iff (𝐴𝐴, 𝐴𝐴𝐴) is a sat assignment to F.

We have an OV instance with N = 2𝑛𝑛/2 vectors of dimension 𝑑𝑑 = 𝑂𝑂(𝑚𝑚)
Therefore, if OV can be solved in 𝑁𝑁2−𝛿𝛿 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) time for some 𝛿𝛿 > 0

then CNF-SAT can be solved in 2𝑛𝑛(1−𝛿𝛿2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚) time, and SETH is false!



OV

Sparse graph diameter [RV’13,BRSVW’18], 
eccentricities [AVW’16] , local alignment, longest 
common substring* [AVW’14], Frechet distance 
[Br’14], Edit distance [BI’15], LCS, dynamic time 
warping [ABV’15, BrK’15], subtree isomorphism 

[ABHVZ’15], Betweenness [AGV’15], Hamming Closest 
Pair [AW15], Reg. Expr. Matching [BI16,BGL17]…

N2- ε’

k-SAT
[W’04]

Diameter:
Given 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), determine 𝐷𝐷 = max

𝑢𝑢,𝑣𝑣∈𝑉𝑉
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖(𝑢𝑢, 𝑣𝑣).

𝟑𝟑
𝟐𝟐
− Approximate Diameter: output D’ such that 2𝐷𝐷

3
≤ 𝐷𝐷′ ≤ 𝐷𝐷.

Let G have m edges and n vertices.
Using BFS, can solve Diameter in 𝑂𝑂 𝑚𝑚𝑛𝑛 time
Best known, even in sparse graphs.

[RV’13] 3/2-Approximate Diameter in �𝑂𝑂 𝑚𝑚
3
2

time: better than 𝑚𝑚𝑛𝑛 for sparse graphs!

We’ll show 3/2−𝜖𝜖 Approximate Diameter for 
𝜖𝜖 > 0 requires 𝑚𝑚𝑛𝑛1−𝑜𝑜(1) time under SETH.

Hard: Distinguishing between sparse graphs 
of Diameter 2, and those with Diameter 3

N2- ε

2(1 - δ)n



DIAMETER 2 OR 3 

Every pair of vector nodes from the same side have distance 2.
Every coordinate node is distance 2 from everyone, 

X and Y have distance 2 from everyone.

Two vector nodes u and v from different sides have
distance 2 if there’s a c with u[c]=v[c]=1, and have distance 3 otherwise!

Node for 
each vector Node for each 

coordinate

Node for 
each vector

For each v,c
edge (v,c) iff
v[c]=1

For each d, u 
edge (d,u) iff
u[d]=1

X Y

Graph has 𝑂𝑂(𝑛𝑛) nodes. 
Since 𝑑𝑑 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛),
has 𝑚𝑚 = Õ(𝑛𝑛) edges

Thm: Determining if a graph 
has diameter 2 or 3 in O(m2-ε) 
time implies O(n2- ε) time for 
OV, so SETH is false!

Reduce from OV with n vectors and 
dimension d = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(log𝑛𝑛)

Claim: The diameter of this 
graph is 3 if there is an 

orthogonal pair, 
and is 2 otherwise.v

c

d

u

[RV’13]



THAT’S ALL! THANK YOU!

LECTURE NOTES FOR A WHOLE COURSE @
https://people.csail.mit.edu/virgi/6.1420/
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