
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 26 — April 27, 2023

Prof. Jelani Nelson Scribe: Jelani Nelson

1 Lower bounds and the cell probe model

Typically in this class we have assumed the word RAM model of computation. That is, our machine
has some constant number of registers and runs a program stored in memory. The first instruction
of the program is stored at some particular memory address M0, the next one at M1, etc. (and some
instructions can be JUMPs, which set the program counter to some other value). These instructions
all operator on words. A word is a basic unit of storage, which we assume is w bits. For example,
the ADD instruction can add two words at a time (modulo 2w), and memory addresses are w bits
long (and hence the total memory of the machine is at most 2w), etc.

How do we prove lower bounds on data structures and algorithms in this model? One of the
most robust ways is to only count LOAD and STORE instructions, since these are instructions that
pretty much any real machine has, whereas some of the other instructions are not necessarily
universal (e.g. POPCOUNT and MostSignificantBit instructions). That is, we only count memory
reads and writes. This model of complexity, where all computation is free and only reads/writes
from/to memory are counted, is known as the cell probe model of Yao [Y78]. In the remainder of
this note, we will be proving lower bounds in this model.

2 Partial sums lower bound

Consider the dynamic partial sums problem over some group G with operation ‘+’ on an n-
dimensional array A. Initially the array has all entries set to 0 (the identity element of the group).

• update(i, b): A[i]← b

• query(i): return
∑i

j=1A[j]

Working with a word of size w, it is natural to consider G to be the cyclic group Z2w . There
is a data structure solving this problem with O(lg n) query time and update time, by building
a complete binary search tree with [n] as leaves. For a node u a group element gu is stored,
maintaining the invariant that the answer to query(i) is the sum of all node-associated group
elements on the root-to-leaf path to leaf i. This invariant can be maintained with O(log n) update
and query. Note that the group does not have to be Z2w . Below we show a lower bound for an
even simpler problem: where the group is Z2 (note this problem is easier, since it is equivalent to
saying we only want to find the least significant bit of the answer for G = Z2w).

We show a lower bound for dynamic partial sums over Z2 due to Fredman and Saks [FS89] of
tq = Ω(lg n/ lg(tuw)), where tu is the update time and tu is the query time. In particular, this
implies max{tu, tq} = Ω(lg n/ lg lg n). The optimal lower bound of max{tu, tq} = Ω(lg n) was not
shown until 15 years later by Pǎtraşcu and Demaine [PD04] — we will not show that today.

1

The lower bound works as follows, and is known as the chronogram technique. The way we
describe the chronogram technique will be in the family of what we call encoding techniques.
Essentially what we say is that if we have a data structures with a bound tq that is too small, then
we could use that data structure an an encoding scheme to compress elements of some set S into
� lg |S| bits. Clearly this is impossible by the pigeonhole principle, so tq must be large. We now
give the details. Almost all of my understanding of how this works is due to a conversation with
Kasper Green Larsen. In particular, the presentation of the chronogram technique below is slightly
different than both the original [FS89] and the treatment in Miltersen’s survey [M99]. I personally
find the explanation given below slightly more intuitive.

Consider a data structure D that works on operation sequences that look as follows. The
operation sequence has n updates, followed by one uniformly random query. We group these n
updates together into what we call epochs. Epoch 1 is the last epoch of updates (right before the
query), and epoch 2 comes right before it, etc. Epoch i will be a sequence of βi updates for some
β we will choose later. Thus the number of epochs is lgβ n.

Recall that there is an n-dimensional array A being updated in dynamic partial sums. In
the updates of epoch i, we update the set of array entries with index of the form j · (n/βi) for
j = 1, . . . , βi. The entries are assigned independent uniform random bit values. We use bi,1, ..., bi,βi
to denote these random bit values, where bi,j is the value assigned to the entry j · (n/βi) during
the updates of epoch i.

At the end of epoch 1, we execute a single uniformly random partial sum query, i.e. query(k)
for a uniformly random k ∈ [n].

Now, we color the memory cells of the data structure (there are at most 2w memory cells) after
the entire sequence of updates has been processed. A memory cell c is colored with color i if its
contents were changed during epoch i but not in any epoch j < i. That is, i is the last epoch in
which c was updated. Let Ci denote the set of cells colored with color i. If the worst case update
time is tu, then clearly |Ci| ≤ tuβi for all i.

Let T denote the (random) set of memory cells probed by the uniformly random query after
the n updates. Our goal is to show that:

∀i, E |T ∩ Ci| = Ω(1).

Since the Ci are disjoint, we get from linearity of expectation that

E |T | ≥
lgβ n∑
i=1

E |T ∩ Ci|,

and a lower bound of tq = Ω(logβ n) would follow.
To prove this, assume for contradiction that there exists some i such that E |T ∩ Ci| ≤ α for

some very small constant α to be determined. We will use this assumption to create an impossible
encoding of bi,1, ..., bi,βi . Notice that the update values for epoch i are independent of epochs j 6= i.
Thus H(bi,1...bi,βi |(bi′,·)i′ 6=i) = βi. This means that an encoder and a decoder can share knowledge
of all updates in all epochs other than i, and we would still have to write down βi bits in an
encoding. In addition to this, let R1, . . . , Rβi be a sequence of random variables such that Rj gives
a uniform random index between j · (n/βi) and (j + 1) · (n/βi)− 1. Clearly we can also condition
on these as they are independent of the update bits. The encoding argument now goes as follows:

2

n
βi

n
βi

n
βi

R1 Rβi
R2

Figure 1: Above is the array A, and its entries are broken into contiguous blocks of size n/βi. Rj is
then chosen to be a uniformly random index in the jth block, i.e. Rj is chosen uniformly at random
in the interval [j · (n/βi), (j + 1) · (n/βi)). The entries in A colored in yellow correspond to the
entries updated in epoch i.

We examine R1, . . . , Rβi and run the corresponding queries on D. For each query, we check
whether it reads a cell in Ci. If we pick a uniform random Rj , then the distribution of the query
is uniform random. This means that Ej,R1,...,Rβi

|T (Rj) ∩ Ci| ≤ α (here T (Rj) is the set of cells

probed by the query Rj). Thus

E
R1,...,Rβi

βi∑
j=1

|T (Rj) ∩ Ci| ≤ αβi.

Thus by Markov’s inequality and a union bound, we get that with probability 3/4, the number of
queries Rj which read in Ci is upper bounded by 4αβi < βi/100 for α = 1/400. If this is not the
case, our encoding consists of a 0-bit, follows by a naive encoding of bi,1, . . . , bi,βi , costing βi + 1
bits.

Otherwise, we start by writing a 1-bit followed by a description of which queries amongst
R1, . . . , Rβi read inside Ci. For those queries, we also write down their answer. This costs

lg
(βi

βi/100

)
+ βi/100 < βi/4 bits. Next, we write down all memory cells in Ci−1, . . . , C1. This

costs
∑

j<iO(|Cj |w) = O(βi−1tuw) bits. If we choose β = (tuw)2, this is o(βi) bits.

The expected size of the encoding is less than 1 + (3/4)(βi/4 + o(βi))(3/4) + (1/4)βi bits, thus
by Shannon’s source coding theorem, the entropy of the encoded message, M , is H(M) < βi/2
bits.

To derive the contradiction, we need to show that this encoded information is enough to (almost)

fully recover (bi,j)
βi

j=1. We will show that a (1− β)-fraction of the bits bi,1, . . . , bi,βi are completely
determined from M : If we wrote a 0-bit first, this follows trivially (in fact then all the bits are
recovered). If we write a 1-bit first, we first obtain the set of queries that read inside Ci and their
corresponding answers. From this, we can also deduce the queries that do not read inside Ci.
Since the epochs j 6= i are known to the decoder, he can execute the update algorithm of D on
all updates preceeding epoch i. Now, since he knows which queries do not read in Ci, he can run
D’s query procedure on those queries. Whenever D’s query procedure requests a memory cell, he
checks whether the cell is included in the sets Ci−1, . . . , C1 (which is in the encoding). If so, he has
the contents and can continue. Otherwise, he knows they are not in sets Ci, ..., C1 and therefore
the contents must be the same as they were just before epoch i. But these contents are known
because he just ran all updates preceeding epoch i. He can thus finish the query algorithm and
now has the answer to every query R1, . . . , Rβi .

3

Now, let us remember which cells are updated in epoch i (the yellow cells in Figure 1). By
the end of epoch i, the first yellow cell contains the value bi,1, the second yellow cell contains bi,2,
etc. All the cells which are not yellow in between were written in previous epochs, and thus the
decoder knows them. Therefore, by knowing all the answers to the R1, . . . , Rβi , the decoder can
recover all the bits written in the yellow positions (since the answer to query Rj is the XOR of
all bits up to and including Rj , and the decoder knows all of those bits except for one, the one
in yellow!). There is a slight catch: epochs i − 1, i − 2, . . . 1 do overwrite some of the yellow cells
with new bits, and thus for the blocks j where this overwriting happens, the decoder will not
learn bi,j from the answers to the queries R1, . . . , Rj . However, note that the only indices that are
overwritten in future epochs are the indices 0, n/βi−1, 2n/βi−2, . . . = 0, βn/βi, 2βn/βi, In other
words, only a β-fraction are overwritten, so the decoder does learn the (1− β)-fraction of the bits
that weren’t overwritten. But these are still (1 − β)βi uniformly random bits, and any encoding
to recover them should have expected encoding length at least (1 − β)βi, but we are achieving
total expected encoding length E |M | < βi/2, which is still a contradiction. In other words, one
can view this entire scheme as a compression scheme not for all the bits bi,1, . . . , bi,βi , but just the
(1− β)-fraction that the decoder actually learns. Alternatively, the encoder can just always write
bi,1, bi,β+1, bi,2β+1, . . . , bi,(βi−1−1)β+1 as part of the encoding as well, which only adds βi−1 = o(βi)
to the encoding length, so that the decoder can in fact learn all the bits at the end of the day.

3 Lower bound for dynamic connectivity

Given the lower bound of max{tu, tq} = Ω(lg n/ lg lgn) of the previous section for dynamic partial
sums over Z2, we can obtain the same lower bound for dynamic connectivity via a reduction due
to [MSVT94]. In fact the reduction holds even if the underlying graph is promised to always be a
collection of two vertex-disjoint trees, which implies optimality of the link-cut trees of Sleator and
Tarjan [ST83]. In dynamic connectivity we wish to support the following operations, where the
graph G starts as the empty graph on n vertices:

• insert(u, v): insert the edge (u, v) into G

• delete(u, v): delete the edge (u, v) from G, if it exists

• connected(u, v): return True if u, v are in the same connected component, and false otherwise

The reduction works as follows. Recall we want to solve dynamic partial sums over Z2, where
there is some underlying array A[0 . . . n− 1] and the answer to query(i) is A[0]⊕A[1]⊕ · · · ⊕A[i].
We maintain a graph G on vertex set [2n+ 3] with the following edge set E:

E =

 ⋃
i:A[i]=0

{(2i+ 1, 2i+ 3), (2i+ 2, 2i+ 4)

 ∪
 ⋃
i:A[i]=1

{(2i+ 1, 2i+ 4), (2i+ 2, 2i+ 3)}

 .

Note that a change to some entry A[i] corresponds to deleting and inserting O(1) new edges
in G (to be precise: two edge removals and two edge insertions into G). One can show that
A[0]⊕A[1]⊕· · ·⊕A[i] equals 0 iff connected(1, 2n+3) is True after inserting the edge (2i+, 3, 2n+3)
into G. Thus query in partial sums can be implemented by one edge insertion, one connected

4

1 171615141312111098765432

Figure 2: Example reduction from dynamic partial sums over Z2 to dynamic connectivity. Numbers
in the top are vertex ID’s. Red edges correspond to 1’s in the array A, and black edges are 0’s. The
underlying array in this example is A[0 . . . 6] = [1, 0, 0, 1, 1, 1, 0]. Thus n = 7, so the total number
of vertices in G is 2n+ 3 = 17. The blue dashed line is inserted before querying connected(1, 17)
to test whether A[0]⊕A[1]⊕A[2]⊕A[3] = 0.

query, then one edge deletion in G. Thus the maximum operation time in dynamic connectivity
must be at least that for partial sums over Z2, which is Ω(lg n/ lg lg n) as shown in the last section.

The intuition behind this reduction is the following. If all array entries A had been zero, then E
would be {(1, 3), (3, 5), (5, 7) . . .}∪{(2, 4), (4, 6), (6, 8), . . .}. That is, there would be an “even path”
(only touching vertices with even ID’s) and an “odd path” (only touching vertices with odd ID’s),
such that after every index i in A, the even path is always one step ahead of the odd path. These
are the black edges in Figure 2. Whenever there is a 1 at some entry in A, it introduces the red
edges into G which swap the even and odd paths. That is, it makes the even path the odd path,
and the odd path the even path. Note that 1 and 2n+ 3 are both odd numbers, so had all entries
of A been 0, they would both be in the odd path together. However, due to the paths swapping
at 1’s, we essentially want to check that the number of swaps from the beginning up to the edges
added by A[i] is even.

4 What’s happened since?

• max{tq, tu} = Ω(lg n) for both dynamic connectivity and partial sums (over Z2w) [PD04].

• max{tq, tu} = Ω((lg n/ lg lg n)2) for dynamic weighted orthogonal range counting in 2D , but
only when the weights are lg2+ε n-bit integers [P07].

• tq = Ω((lg n/ lg(wtu))2) for dynamic range counting in 2D with lg n-bit weights [L12].

• max{tu, tq} = Ω̃(lg1.5 n) for parity dynamic range counting in 2D [LWY17].

• Many lower bounds known for other problems, e.g. union-find, predecessor, dynamic min
spanning forest, planarity testing, dynamic marked ancestor, several computational geometry
problems, approximate nearest neighbor in `p for various p, etc. See [P11] and also the older
survey of Miltersen [M99].

References

[FS89] Michael L. Fredman, Michael E. Saks. The Cell Probe Complexity of Dynamic Data Struc-
tures. STOC, pages 345–354, 1989.

5

[L12] Kasper Green Larsen. The cell probe complexity of dynamic range counting. STOC, pages
85–94, 2012.

[LWY17] Kasper Green Larsen, Omri Weinstein, Huacheng Yu. Crossing the Logarithmic Barrier
for Dynamic Boolean Data Structure Lower Bounds. CoRR abs/1703.03575, 2017.

[M99] Peter Bro Miltersen. Cell probe complexity — a survey. In 19th Conference on the Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS), 1999. Advances
in Data Structures Workshop.

[MSVT94] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, Roberto Tamassia.
Complexity Models for Incremental Computation. Theor. Comput. Sci. 130(1), pages 203–
236, 1994.

[P07] Mihai Pǎtraşcu. Lower bounds for 2-dimensional range counting. STOC, pages 40–46, 2007.

[P11] Mihai Pǎtraşcu. Unifying the Landscape of Cell-Probe Lower Bounds. SIAM J. Comput.
40(3), pages 827–847, 2011.

[PD04] Mihai Pǎtraşcu, Erik D. Demaine. Tight bounds for the partial-sums problem. SODA,
pages 20–29, 2004.

[ST83] Daniel Dominic Sleator, Robert Endre Tarjan. A Data Structure for Dynamic Trees. J.
Comput. Syst. Sci. 26(3), pages 362–391, 1983.

[Y78] Andrew Chi-Chih Yao. Should Tables Be Sorted? FOCS, pages 22–27, 1978.

6

