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1 Overview

In the last lecture we finished discussing the BNW algorithm for the single-source shortest paths
problem. We ended the lecture by talking about how scaling can be used to speed up max flow
algorithms like Ford-Fulkerson. We now continue our discussion of max flow algorithms by looking
at a different approach, namely, blocking flows. We will use blocking flows to motivate link-cut
trees, which we will discuss next lecture.

2 Preliminaries

Recall the statement of max s− t flow:

Definition 2.1 (Capacitated Graph). A capacitated graph is an unweighted directed graph G =
(V,E) equipped with a capacity function u : E → R. Typically, we will have u map into a finite
set of positive integers {1, . . . , U}.

Definition 2.2 (Max Flow). Given as input a capacitated graph G = (V,E, u) and a pair of
vertices s, t ∈ V , the maximum flow problem is to compute some flow f : E → R that maximizes
the value of the flow, given by f∗ =

∑
e=(s,·) fe, subject to the following constraints:

• Positivity: ∀e ∈ E, fe ≥ 0

• Capacity: ∀e ∈ E, fe ≤ ue

• Conservation of Flow: ∀v ∈ V \ {s, t},
∑

e=(v,·) fe =
∑

e=(·,v) fe

A flow f that satisfies the constraints but is not necessarily optimal is called a feasible flow.

Note that the optimization problem defining max flow has a linear objective and linear con-
straints, so it can be solved by a general-purpose linear program solver. However, faster solutions
exist where we exploit the underlying graph structure of the problem.

In undergraduate algorithms, we have seen the Ford-Fulkerson algorithm for max flow, which
works by repeatedly augmenting the flow in the residual graph until no more flow can be routed.
We recall the definitions of these objects.

Definition 2.3 (Residual Graph). Given a flow f on capacitated graph G = (V,E, u), we define
the residual graph Gf as a new capacitated graph Gf = (V,E ∪ rev(E), u′) (where rev(E) denotes
reversing all the edges). To compute u′, we initialize u′e = fe for e ∈ E and 0 otherwise. Then, for
each e ∈ E, we apply u′e ← u′e − fe and u′rev(e) ← u′rev(e) + fe.

Definition 2.4 (Augmentation). Given a flow f1 in G and a flow f2 in the residual graph Gf1 , we
augment the first flow to give a new feasible flow on G given by f1 + f2.
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3 Historical Development of Max Flow Algorithms

Broadly speaking, there are three classes of max-flow algorithms.

• pseudopolynomial algorithms run in poly(m,n,U) time1;

• weakly polynomial algorithms run in poly(m,n, logU) time

• strongly polynomial algorithms run in poly(m,n) time2

Note that naive Ford-Fulkerson takes O(mf∗) = O(mnU) time and is thus pseudopolynomial,
while Ford-Fulkerson with scaling achieves O(m2 logU) time and is thus weakly polynomial. Finally,
Edmonds-Karp (which is variant of Ford-Fulkerson where we always search for s − t paths in the
residual graph using breadth-first search) takes only O(m2n) time and is thus strongly polynomial.

We have achieved the following runtimes for the max flow problem:

• strongly polynomial algorithms:

– [Orl13] runs in O(mn) time

• weakly polynomial algorithms:

– [GR98] runs in O(mmin{
√
m,n2/3} log(n2/m) logU) time

– [LS14] runs in Õ(m
√
n logU) time

– [CKL+22] runs in m1+o(1) logU time

In particular, the approaches of [LS14] and [CKL+22] make use of heavy continuous optimization
machinery.

4 Blocking Flows

4.1 Intuition

Recall that in Ford-Fulkerson, we iterate the process of computing the residual graph with respect
to the current flow, finding a flow within the residual graph, and augmenting to get a new flow.
However, in Ford-Fulkerson, we always augment using only a path, which leads to our algorithm
taking a large number of iterations in the worst case. Today, we will be able to speed things up by
augmenting according to a blocking flow.

Definition 4.1 (Level Graph). Given a residual graph Gf , the level graph L is the subgraph given
by edges (v, w) such that distGf

(s, w) = distGf
(s, v) + 1, where dist denotes the shortest path

distance. We call the set of edges appearing in the level graph admissible. An admissible path is a
path that only uses admissible edges.

1Note that U takes logU bits to represent, so a poly(U) factor is actually exponential in the input length.
2We work in the word RAM model, which means given an input of B bits we can perform memory access and

arithmetic on words of size O(logB) in constant time. This means that we do not have to incur a logU runtime
penalty just because the input values take logU bits to represent.
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Definition 4.2 (Blocking flow). A blocking flow f̃ in residual graph Gf is one that only contains
admissible edges and is such that every admissible s− t path has at least one edge fully saturated
by f̃ .

We show an example of a blocking flow in Fig. 1. Note that blocking flows need not be max
flows.
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Figure 1: Vertices above are horizontally aligned according to their level. A blocking flow is
highlighted in blue. Note that the blocking flow is not a max flow for this graph.

4.2 Monotonically Increasing s− t Distance

This is the main lemma we will need in the analysis of our blocking flow algorithms, as it will give
us an upper bound to the number of iterations our algorithm will take.

Lemma 4.3. Let Gf be some residual graph and L be the associated level graph. Suppose we
augment f along some blocking flow. Then the new level graph L′ will be such that distL′(s, t) >
distL(s, t).

Proof. Define level i to be the set of vertices at distance i from s in the original graph Gf . Bear
in mind that after we augment along our blocking flow, we will have a new residual graph G′f , but
we will still be referring to level sets according to their distance in Gf . Observe that Gf contains
some edges that go up exactly 1 level3 and some edges that decrease or keep the level the same4.
Edges that go up more than one level do not exist. Finally, note that s is in level 0 and t is in level
D := distL(s, t).

3By definition, these are the edges that comprise L.
4Naturally, these are the edges in Gf \ L.
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When we augment along an admissible flow, we can potentially saturate edges in L and introduce
new reverse edges that go down from the current level, but we certainly cannot introduce new
edges that go up levels as this would mean we pushed flow along an edge in Gf \ L, contradicting
admissibility. It follows that distL′(s, t) ≥ D, as we need to follow at least D edges in L′ in order
to go from level 0 to level D. Indeed, we also can conclude that equality cannot hold, because that
would mean that every edge we followed has increased the level, implying we only used edges in L.
This contradicts the assumption that we augmented along a blocking flow, as we could have simply
pushed more flow along this path.

Note that the maximum finite value distL(s, t) can be for a level graph associated with any flow
is n− 1, as there cannot be a path with more than n vertices in a graph. This means that we can
increase distL(s, t) at most O(n) times before we disconnect s and t. Hence, all we need is to find
an algorithm to compute a single blocking flow, and iterating it O(n) times on successive residual
graphs will give an algorithm to solve the max flow problem.

4.3 Finding a Blocking Flow, Unit Capacity Case

For now, let us assume that our input graph has unit capacities (i.e. ue = 1 for all e). We run an
algorithm that is essentially a modified depth-first search on the level graph L looking for admissable
s− t paths. When we arrive at vertex v, we take one of three operations:

1. advance: If there is a neighbor w of v such that (v, w) ∈ L, move to w. Store p(w) ← v to
maintain the current path.

2. retreat: If there are no admissible edges from v, go back to pred(v) and remove the edge
(pred(v), v) from L.

3. augment: If we have reached t, then add 1 unit of flow to each edge in the s− t path found,
remove the path from L, and go back to s.

Warning: The augment operation does not compute the new residual graph G′f ; we wait until we
have completed finding the blocking flow in order to do so.

In the algorithm above, we advance and retreat successively until we find an opportunity
to augment. We do this iteratively until we have no more admissible paths from s to t, which
indicates that we have found a blocking flow for L. Once we have found a blocking flow for L, we
reconstruct the new residual graph, G′f . From G′f , we construct its corresponding level graph L.
This is summarized in Algorithm 1

4.3.1 Runtime analysis

For our first analysis, we reiterate the fact that we need to find at most O(n) blocking flows before
we end up disconnecting s and t. Therefore, the outer loop of Algorithm 1 runs at most O(n) times.
The overall runtime will depend on the time it takes to find a blocking flow.

Claim 4.4. Finding a blocking flow according to the algorithm specified in Subsection 4.3 takes
O(m) time.
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Algorithm 1 Max Flow Blocking Algorithm – Unit Capacities

Require: G – a capacitated graph.
1: Gf ← G
2: repeat
3: L← LevelGraph(Gf )
4: repeat
5: augment flow as much as possible in L
6: until we find a blocking flow f̃
7: Gf ← Residual(Gf , f̃)
8: until there is no path from s to t in Gf

Proof. Note that we can only advance along a given edge once, as it will either trigger a future
retreat or augment. Thus we take O(m) time across all calls to advance. Similarly, each edge
contributes only O(1) work to the total time spent retreating or augmenting, so those operations
take O(m) time as well. We conclude that finding a blocking flow can be done in O(m) time for
unit capacity graphs.

Combining this algorithm with our outer loop as described in Algorithm 1 means that we have
a O(mn) runtime. However, using a different analysis gives us a different bound on the number of
iterations, and therefore a more accurate overall runtime.

Claim 4.5. The overall runtime of Algorithm 1 is O(m3/2).

Proof. As the shortest path distance from s to t in Gf increases each iteration, we deduce that after
d iterations the shortest s − t path has at least d edges. However, as the graph is unit capacity,
then any max flow from s to t in Gf can be written as a disjoint union of paths and cycles, as no
edge can be routing flow for two different paths at once. Thus the total s− t flow is upper bounded
by the number of paths from s to t, which is in turn upper bounded by m/d as there are m total
edges. As each iteration of our algorithm will add at least 1 unit of flow until termination, we
conclude that there can be only m/d further iterations before the algorithm terminates. Thus the
total number of iterations is upper bounded by mind(d + m/d) = O(

√
m). This gives us an overall

runtime of O(m3/2).

4.4 Finding a Blocking Flow, General Case

For the general case with non-unit capacities, we consider the same algorithm as in Subsection 4.3,
but where augment will route as much flow as the path has capacity for.

Claim 4.6. With general capacities, the algorithm described above takes O(mn) time to find a
blocking flow.

Proof. As before, we consider the total time spent performing each operation:

• advance: At some point in each sequence of advances, we will either end up with a retreat

or an augment. We can have at most O(n) consecutive advances (as there are no paths of
length greater than n), and there are at most O(m) retreats and augments (see below), so
we spend at most O(mn) time in advance.
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• retreat: We can only retreat across each edge once, so we spend at most O(m) time in
retreat.

• augment: Every time we augment, at least one edge in that path gets fully saturated, so we
remove that edge from the graph. Thus we can augment at most m times. Each augment
takes at most O(n) time (from the path length), so spend at most O(mn) time in augment.

As before, we note that there are O(n) iterations so computing a max flow takes O(mn2) time
in a general capacity graph.

4.5 Link-Cut Trees Preview

Note that Algorithm 1 may encounter the same vertex across multiple advances, so it stands to
reason that a clever choice of data structure would be able to memoize the v− t paths. This forms
the basis for link-cut trees.
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