
CS 270: Combinatorial Algorithms and Data Structures Spring 2023

Lecture 7 — February 7, 2023

Prof. Jelani Nelson Scribe: Chris Liu, Serena Zhang

1 Overview

Next many (5) lectures: Data Structures
Today: Heaps (Priority Queues)
Store database of key-value pairs subject to:

1. insert(k, v): adds key-value pair (k, v) to database of items

2. decKey(*v, k): reduces old key of v to new key k, do nothing if k is bigger than old key

3. delMin(): return item with smallest key, delete it from database

2 Runtime of Algorithms that use Heaps

Assume there are n vertices and m edges in the graph.
Dijkstra : n · tI + n · tDM + m · tDK

Prim : n · tI + n · tDM + m · tDK

DS Name tI tDM tDK

Binary log n log n log n
Binomial 1∗ log n log n
Fibonacci 1∗ log n∗ 1∗

Note: n is the size of the heap. ∗ means amortized.
More Recent:

• Brodal ′96 matched Fibonacci bounds in all worst case without amortization. Caveat is it’s
not a ”pointer-machine,” meaning it doesn’t store items in a tree/graph.

• Brodal, Lagogianis, Tarjan STOC ′12 matched Fibonacci bounds in all worst case and using
”pointer-machine.”

3 Analysis based on Potential Function

Recall that potential function Φ : {state} → R. We define Φ-cost = true cost + ∆Φ. We assume
that Φ ≥ 0 and Φ of an empty heap is 0. Total Φ-cost = total cost + Φfinal−Φinitial = total cost +
Φfinal ≥ total cost. We conclude that Φ-cost of an operation is a valid upper bound on amortized
cost of that operation.

1



4 Binomial Heaps

• Forest of trees

• Each tree is heap-ordered, key(x) ≥ key(parent(x))

• Define rank of a tree is degree of root

• Invariant: at most one tree of each rank

Note that largest rank ≤ log n in Binomial Heaps. And a rank k tree will have rank j trees hanging
off the root for j = 0, 1, ..., k − 1. A rank k tree has 2k items.

Figure 1: Binomial Heap: forest of trees

Consider adding an item to the binary heap shown above. When adding a new node to the
heap, we create a rank 0 tree but there is already a rank 0 tree so we merge them such that the
heap order is preserved. Now there are two rank 1 trees so we merger again. Repeat the process
above and we will eventually merge two rank 3 trees into one rank 4 tree. Now if we add a new
item, there would be a rank 0 tree and a rank 4 tree.

2



Figure 2: Add an item to Binary Heap

We can think of this process as binary addition. We represent the heap as a binary number,
each digit represents a rank (rightmost digit represents rank 0 and so on, for example, 1101 means
there is a rank 0 tree, a rank 2 tree, and a rank 3 tree in the heap). Adding a new node to binary
heap is like adding 1 to the binary number that represents the heap.

4.1 Implementation

• insert : add the new node as a rank 0 tree, then keep merging

• decKey : decrement key, if it’s smaller than its parent, keep bubbling it up until the heap
property is not violated

• delMin: query every root to get the min node, return and delete the min node. Now we have
k trees, iteratively merge them.

Note that merging k trees can again be thought of as binary addition. Instead of adding 1
to a binary number, we are now adding an arbitrary binary number of the binary number that
represents the heap.

4.2 Analysis

We define potential function Φ(H) := number of trees in H, denote as T (H).

• insert : actual cost︸ ︷︷ ︸
1+(T−t)

+ ∆Φ︸︷︷︸
t−T

= O(1)

T is the number of trees before operation, t is the number of trees after operation. T − t tells
us how many ”carry bits” there were.

• decKey : actual cost︸ ︷︷ ︸
logn

+ ∆Φ︸︷︷︸
0

= O(log n)

O(log n) to bubble up the decremented node, and no trees were created or destroyed.

• delMin: actual cost︸ ︷︷ ︸
logn

+ ∆Φ︸︷︷︸
logn

= O(log n)

O(log n) to scan through all roots since there are at most O(log n) different ranks, O(log n)
to merge the trees.

3



5 Fibonacci Heaps

5.1 Implementation

• insert : add a new rank 0 tree

• decKey : if decreasing the key of x violates the heap property, cut the edge between x and its
parent and make x the root of a new tree

• delMin: scan through roots of all trees and find the min root, return and delete from tree,
then consolidate by merging trees with equal ranks

The problem with decKey is that number of items in rank k trees is too small (not 2k). So we fix
it by doing the following : the first time a node x loses a child, no problem, but the second time it
loses a child, cut x off from its parent

Figure 3: Rank k Tree with bad decKey

If we use the decKey function defined above, we would keep cutting subtrees and leave the rank
k tree with very few nodes. So we construct a better decKey :

• each node maintains a ”mark” bit

• mark = 1 if x has lost one child

• when x loses 2 children, make x its own tree, then set mark = 0

5.2 Minimum Possible Size of a Tree as a Function of its Rank

Claim 5.1. rank k tree has size ≥ Fk+2 (Fk+2 is the (k + 2)th Fibonacci number)

Proof. For the rank 0 and rank 1 tree, the size is at least 1 = F2 and 2 = F3 respectively. For a tree
of rank k where k > 1, suppose the children of the root x are y0, · · · yk−1 (sorted in increasing order
by when they became children of x). For i > 2, at the point in time that i became a child of x, x
had rank at least i, so yi must have as well (we only make a node a parent of another if they are
both roots of equal rank). Since then yi must have lost at most 1 child, and thus has rank at least
i− 1. Thus if Si is the minimum size of a subtree whose root has i children, then Sk ≥ 2 +

∑k−2
i=0 Si

(the “2+” comes from the root, and the child y0). The subtree sizes are minimized when all ≥
are equalities, in which we get Sk − Sk−1 = Sk−2, or rearranging, Sk = Sk−1 + Sk−2, which is the
Fibonacci sequence recurrence.

4



Note : Fk = Fk+1 + Fk+2 ≥ 2Fk−2 ≥ 2
k
2 =
√

2
k
, so Fk grows exponentially.

Figure 4: Minimum Possible Size of a Tree

Black numbers are ranks, pink numbers are minimum possible number of nodes in the tree.
Edges crossed off are the ones that can be cut off without changing the rank of the trees.

5.3 Analysis

Define Φ(H) := T (H) + 2 ·M(H), where M(H) is the number of marked items.

• insert : O(1) + ∆T (H)︸ ︷︷ ︸
1

+2 ∆M(H)︸ ︷︷ ︸
0

= O(1)

• decKey : Say there are C cascading cuts. O(1) + C + ∆T (H)︸ ︷︷ ︸
C

+2 ∆M(H)︸ ︷︷ ︸
−(C−1)+1

= O(1)

Since when after C cuts, C new trees were created, C − 1 nodes got unmarked, node at the
”top” got marked.

• delMin: T (H) + ∆T (H)︸ ︷︷ ︸
O(logn)−T (H)

+2 ∆M(H)︸ ︷︷ ︸
0

= O(log n)

Actual cost is T (H) to scan through all roots. Max number of new trees you can create is
log n since the max rank is log n. Change in the number of marked nodes is zero because
delMin doesn’t mark or unmark any nodes.

References

[1] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652–686, 1985.

5


